你现在的位置: 首页 > 癌症医典(结直肠癌) > 直肠癌治疗
中文版 / English
直肠癌治疗(PDQ®)

直肠癌的基本信息

发病率和死亡率

由于流行病学经常将结肠癌和直肠癌放在一起(如结直肠癌),很难在流行病方面将直肠癌和结肠癌区分。我国肿瘤登记报告也是将结肠癌和直肠癌放在了一起,统称为结直肠癌。

在世界范围内,结直肠癌是第三大恶性肿瘤。2012年,结直肠癌新发病例估计为136万,死亡病例为69.4万。在中国,结直肠癌也是第三大恶性肿瘤

2019年美国结直肠癌的预计新发病例和死亡病例:

  • 直肠癌新发病例:44180。
  • 结肠癌新发病例:101420。
  • 死亡病例:51020(结肠癌和直肠癌)。
  • 据估计,2015年中国结直肠癌中国人口标化发病率为18.02/10万,死亡率为8.21/10万 ;世界人口标化发病率17.81/10万,死亡率8.12/10万。

    结直肠癌对男性和女性的影响几乎相同。在美国所有种族中,非裔美国人的散发性结直肠癌发病率和死亡率最高。男性结直肠癌发病率高于女性。

    解剖

    下消化道系统的解剖特征

    直肠位于盆腔内,从肛门齿状线的移行粘膜延伸到腹膜折返处的乙状结肠;;通过乙状结肠镜检查,距离肛缘10cm-15cm为直肠

    直肠肿瘤的位置通常由肛缘、齿状线或肛肠环与肿瘤下缘之间的距离来标识,测量值因使用的内窥镜软硬度不同或数字不同而有所差异。

    肿瘤与肛门括约肌之间的距离代表着保肛手术的可能性。盆腔的骨性结构约束了直肠的手术入路,这就降低了获得广泛阴性切缘的可能性,并增加了局部复发的风险。

    风险因素

    年龄的增长是大多数癌症的一个最重要的风险因素。结直肠癌的其他风险因素还包括:

  • 直系亲属患结直肠癌的家族史
  • 结直肠腺瘤、结直肠癌、卵巢癌的既往史
  • 遗传性疾病,如家族性腺瘤性息肉病(FAP)、林奇综合征(遗传性非息肉样结直肠癌[HNPCC])。
  • 长期慢性溃疡性结肠炎或克罗恩病的病史。
  • 酗酒史
  • 吸烟史
  • 种族/民族:非裔美国人
  • 肥胖
  • 筛查

    建议将直肠癌筛查作为50岁及以上成人的常规体检项目,特别是直系亲属结直肠癌家族史的人群,主要有以下几点因素:

  • 该病常见于50岁及以上患者
  • 高危险人群的识别能力
  • 原发病灶增长缓慢
  • 早期患者的生存期长
  • 筛查相对简便和准确
  • (更多信息,请参考PDQ摘要“结直肠癌筛查”相关内容。)

    临床特征

    与结肠癌相似,直肠癌的症状可能包括:

  • 直肠出血
  • 排便习惯改变
  • 腹痛
  • 肠道梗阻
  • 食欲改变
  • 体重下降
  • 恶心和呕吐
  • 除了梗阻症状外,其他症状不一定与疾病的分期有关,也不一定代表着某种特定的诊断。

    诊断性评估

    起始临床评估可能包括:

  • 体格检查和病史问诊
  • 直肠指检
  • 结肠镜
  • 活检
  • CEA检测
  • 逆转录聚合酶链反应试验
  • 免疫组化
  • 体格检查可能发现直肠内有明显的肿块和鲜血。淋巴结肿大、肝肿大或肺部征象可提示转移。

    实验室检查可发现缺铁性贫血、电解质和肝功能异常。

    预后因素

    直肠癌患者的预后与以下因素相关,包括:

  • 肿瘤粘连于或侵犯相邻器官
  • 是否有淋巴结受累及淋巴结转移数目
  • 是否有远处转移
  • 肠穿孔或梗阻
  • 是否有高风险病理学特征,包括:
  • 手术切缘阳性
  • 淋巴血管侵犯
  • 周围神经侵犯
  • 低分化
  • 手术环周切缘(CRM)或肿瘤侵犯肠壁深度。
  • CRM定义为腹膜后或腹膜外膜软组织边界距离肿瘤浸润最深部位的最短距离,以毫米为单位。
  • 在多机构前瞻性研究中,只有疾病分期(由肿瘤[T]、区域淋巴结[N]和远处转移[M]定义)被证明是预后因素。

    一项大型的汇总分析评估了T和N分期的作用以及辅助治疗对直肠癌患者生存和复发的影响,并且这一结果已被发表并得到证实。

    已有大量研究对其他的临床、病理和分子指标进行了评估。

    迄今为止,还未有一个得到多中心前瞻性试验的证实。例如,高度微卫星不稳定性与林奇综合征相关的直肠癌具有关联性。在一个以人群为基础的纳入607例样本的临床试验中,结果提示微卫星不稳定或能改善发病年龄在50岁或以下结直肠癌患者的生存期,但与临床分期无关。

    此外,据报道,基因表达谱分析有助于预测直肠腺癌对术前放化疗的反应,并预测5-FU为基础的新辅助放化疗用于临床Ⅱ期和Ⅲ期直肠癌的预后。

    直肠癌辅助治疗后患者的总生存率(OS)存在种族和种族差异。黑人的总体生存期较白人短。这种差异的影响因素可能包括肿瘤的位置、手术方式和是否共病。

    治疗后随访

    直肠癌术后监测项目的主要目标是:

  • 评估初始治疗的疗效。
  • 监测新发或异时性肿瘤。
  • 监测潜在治愈的复发或转移癌。
  • 直肠癌治疗后,应定期复查,有助于复发疾病早期发现、早期治疗。

    两项临床试验中已证实密切随诊对患者的生存期具有重要的临床意义。一项荟萃分析将这2项试验和另外4项报告结合分析,指出密切随诊可改善患者的生存率,具有统计学意义。

    美国和欧洲主流的肿瘤学会对结直肠癌初次治疗后的监测指南各不相同,因此最佳监测方案未达成统一。

    需要进行大规模、合理设计的、前瞻性、多中心、随机研究,以建立基于循证证据的共识,进行随访评估。

    CEA

    癌胚抗原(CEA)是一种血清糖蛋白,常用于直肠癌患者的治疗和随访。一篇文章就肿瘤标志物CEA的临床应用提出以下几点:

  • 血清CEA检测灵敏度低,特异性差,不适合作为直肠癌的筛查手段。
  • 术后CEA检测通常仅限于可能需要进一步干预的患者,如:
  • 临床II和III期直肠癌患者(诊断后每2-3个月复查一次,至少持续2年)。
  • 直肠癌肝转移拟行肝转移灶切除的患者。
  • 在一项荷兰回顾性研究中,对全直肠系膜切除治疗直肠癌进行了研究。研究者发现大多数直肠癌患者的术前血清CEA水平正常,而复发患者的血清CEA水平至少上升了50%。作者得出结论,术前血清CEA水平正常的直肠癌患者,不能忽视术后CEA监测。

    相关摘要

    包含直肠癌信息的其他PDQ摘要如下:

  • 结直肠癌预防。
  • 结直肠癌筛查。
  • 胃肠道间质瘤。
  • 结直肠癌的基因组学。
  • 儿童罕见癌症的治疗(儿童结直肠癌)
  • 参考文献

  • Ferlay J, Soerjomataram I, Ervik M, et al.: GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide. Lyon, France: International Agency for Research on Cancer, 2013. IARC CancerBase No. 11. Available online. Last accessed February 27, 2020.
  • American Cancer Society: Cancer Facts and Figures 2019. Atlanta, Ga: American Cancer Society, 2019. Available online. Last accessed December 12, 2019.
  • Albano JD, Ward E, Jemal A, et al.: Cancer mortality in the United States by education level and race. J Natl Cancer Inst 99 (18): 1384-94, 2007.
  • Kauh J, Brawley OW, Berger M: Racial disparities in colorectal cancer. Curr Probl Cancer 31 (3): 123-33, 2007 May-Jun.
  • Wolpin BM, Meyerhardt JA, Mamon HJ, et al.: Adjuvant treatment of colorectal cancer. CA Cancer J Clin 57 (3): 168-85, 2007 May-Jun.
  • Libutti SK, Willett CG, Saltz LB: Cancer of the rectum. In: DeVita VT Jr, Lawrence TS, Rosenberg SA: Cancer: Principles and Practice of Oncology. 9th ed. Philadelphia, Pa: Lippincott Williams & Wilkins, 2011, pp 1127-41.
  • Johns LE, Houlston RS: A systematic review and meta-analysis of familial colorectal cancer risk. Am J Gastroenterol 96 (10): 2992-3003, 2001.
  • Imperiale TF, Juluri R, Sherer EA, et al.: A risk index for advanced neoplasia on the second surveillance colonoscopy in patients with previous adenomatous polyps. Gastrointest Endosc 80 (3): 471-8, 2014.
  • Singh H, Nugent Z, Demers A, et al.: Risk of colorectal cancer after diagnosis of endometrial cancer: a population-based study. J Clin Oncol 31 (16): 2010-5, 2013.
  • Srinivasan R, Yang YX, Rubin SC, et al.: Risk of colorectal cancer in women with a prior diagnosis of gynecologic malignancy. J Clin Gastroenterol 41 (3): 291-6, 2007.
  • Mork ME, You YN, Ying J, et al.: High Prevalence of Hereditary Cancer Syndromes in Adolescents and Young Adults With Colorectal Cancer. J Clin Oncol 33 (31): 3544-9, 2015.
  • Laukoetter MG, Mennigen R, Hannig CM, et al.: Intestinal cancer risk in Crohn's disease: a meta-analysis. J Gastrointest Surg 15 (4): 576-83, 2011.
  • Fedirko V, Tramacere I, Bagnardi V, et al.: Alcohol drinking and colorectal cancer risk: an overall and dose-response meta-analysis of published studies. Ann Oncol 22 (9): 1958-72, 2011.
  • Liang PS, Chen TY, Giovannucci E: Cigarette smoking and colorectal cancer incidence and mortality: systematic review and meta-analysis. Int J Cancer 124 (10): 2406-15, 2009.
  • Laiyemo AO, Doubeni C, Pinsky PF, et al.: Race and colorectal cancer disparities: health-care utilization vs different cancer susceptibilities. J Natl Cancer Inst 102 (8): 538-46, 2010.
  • Lansdorp-Vogelaar I, Kuntz KM, Knudsen AB, et al.: Contribution of screening and survival differences to racial disparities in colorectal cancer rates. Cancer Epidemiol Biomarkers Prev 21 (5): 728-36, 2012.
  • Ma Y, Yang Y, Wang F, et al.: Obesity and risk of colorectal cancer: a systematic review of prospective studies. PLoS One 8 (1): e53916, 2013.
  • Stein W, Farina A, Gaffney K, et al.: Characteristics of colon cancer at time of presentation. Fam Pract Res J 13 (4): 355-63, 1993.
  • Majumdar SR, Fletcher RH, Evans AT: How does colorectal cancer present? Symptoms, duration, and clues to location. Am J Gastroenterol 94 (10): 3039-45, 1999.
  • Compton CC, Greene FL: The staging of colorectal cancer: 2004 and beyond. CA Cancer J Clin 54 (6): 295-308, 2004 Nov-Dec.
  • Swanson RS, Compton CC, Stewart AK, et al.: The prognosis of T3N0 colon cancer is dependent on the number of lymph nodes examined. Ann Surg Oncol 10 (1): 65-71, 2003 Jan-Feb.
  • Le Voyer TE, Sigurdson ER, Hanlon AL, et al.: Colon cancer survival is associated with increasing number of lymph nodes analyzed: a secondary survey of intergroup trial INT-0089. J Clin Oncol 21 (15): 2912-9, 2003.
  • Prandi M, Lionetto R, Bini A, et al.: Prognostic evaluation of stage B colon cancer patients is improved by an adequate lymphadenectomy: results of a secondary analysis of a large scale adjuvant trial. Ann Surg 235 (4): 458-63, 2002.
  • Tepper JE, O'Connell MJ, Niedzwiecki D, et al.: Impact of number of nodes retrieved on outcome in patients with rectal cancer. J Clin Oncol 19 (1): 157-63, 2001.
  • Balch GC, De Meo A, Guillem JG: Modern management of rectal cancer: a 2006 update. World J Gastroenterol 12 (20): 3186-95, 2006.
  • Weiser MR, Landmann RG, Wong WD, et al.: Surgical salvage of recurrent rectal cancer after transanal excision. Dis Colon Rectum 48 (6): 1169-75, 2005.
  • Fujita S, Nakanisi Y, Taniguchi H, et al.: Cancer invasion to Auerbach's plexus is an important prognostic factor in patients with pT3-pT4 colorectal cancer. Dis Colon Rectum 50 (11): 1860-6, 2007.
  • Griffin MR, Bergstralh EJ, Coffey RJ, et al.: Predictors of survival after curative resection of carcinoma of the colon and rectum. Cancer 60 (9): 2318-24, 1987.
  • DeVita VT Jr, Lawrence TS, Rosenberg SA: Cancer: Principles and Practice of Oncology. 9th ed. Philadelphia, Pa: Lippincott Williams & Wilkins, 2011.
  • Wieder HA, Rosenberg R, Lordick F, et al.: Rectal cancer: MR imaging before neoadjuvant chemotherapy and radiation therapy for prediction of tumor-free circumferential resection margins and long-term survival. Radiology 243 (3): 744-51, 2007.
  • Gunderson LL, Sargent DJ, Tepper JE, et al.: Impact of T and N stage and treatment on survival and relapse in adjuvant rectal cancer: a pooled analysis. J Clin Oncol 22 (10): 1785-96, 2004.
  • McLeod HL, Murray GI: Tumour markers of prognosis in colorectal cancer. Br J Cancer 79 (2): 191-203, 1999.
  • Jen J, Kim H, Piantadosi S, et al.: Allelic loss of chromosome 18q and prognosis in colorectal cancer. N Engl J Med 331 (4): 213-21, 1994.
  • Lanza G, Matteuzzi M, Gafá R, et al.: Chromosome 18q allelic loss and prognosis in stage II and III colon cancer. Int J Cancer 79 (4): 390-5, 1998.
  • Roth JA: p53 prognostication: paradigm or paradox? Clin Cancer Res 5 (11): 3345, 1999.
  • Nishio H, Hamady ZZ, Malik HZ, et al.: Outcome following repeat liver resection for colorectal liver metastases. Eur J Surg Oncol 33 (6): 729-34, 2007.
  • Edler D, Hallström M, Johnston PG, et al.: Thymidylate synthase expression: an independent prognostic factor for local recurrence, distant metastasis, disease-free and overall survival in rectal cancer. Clin Cancer Res 6 (4): 1378-84, 2000.
  • Popat S, Chen Z, Zhao D, et al.: A prospective, blinded analysis of thymidylate synthase and p53 expression as prognostic markers in the adjuvant treatment of colorectal cancer. Ann Oncol 17 (12): 1810-7, 2006.
  • Gryfe R, Kim H, Hsieh ET, et al.: Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 342 (2): 69-77, 2000.
  • Liersch T, Langer C, Ghadimi BM, et al.: Lymph node status and TS gene expression are prognostic markers in stage II/III rectal cancer after neoadjuvant fluorouracil-based chemoradiotherapy. J Clin Oncol 24 (25): 4062-8, 2006.
  • Ghadimi BM, Grade M, Difilippantonio MJ, et al.: Effectiveness of gene expression profiling for response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. J Clin Oncol 23 (9): 1826-38, 2005.
  • Dignam JJ, Ye Y, Colangelo L, et al.: Prognosis after rectal cancer in blacks and whites participating in adjuvant therapy randomized trials. J Clin Oncol 21 (3): 413-20, 2003.
  • Abir F, Alva S, Longo WE, et al.: The postoperative surveillance of patients with colon cancer and rectal cancer. Am J Surg 192 (1): 100-8, 2006.
  • Martin EW, Minton JP, Carey LC: CEA-directed second-look surgery in the asymptomatic patient after primary resection of colorectal carcinoma. Ann Surg 202 (3): 310-7, 1985.
  • Bruinvels DJ, Stiggelbout AM, Kievit J, et al.: Follow-up of patients with colorectal cancer. A meta-analysis. Ann Surg 219 (2): 174-82, 1994.
  • Lautenbach E, Forde KA, Neugut AI: Benefits of colonoscopic surveillance after curative resection of colorectal cancer. Ann Surg 220 (2): 206-11, 1994.
  • Khoury DA, Opelka FG, Beck DE, et al.: Colon surveillance after colorectal cancer surgery. Dis Colon Rectum 39 (3): 252-6, 1996.
  • Pietra N, Sarli L, Costi R, et al.: Role of follow-up in management of local recurrences of colorectal cancer: a prospective, randomized study. Dis Colon Rectum 41 (9): 1127-33, 1998.
  • Secco GB, Fardelli R, Gianquinto D, et al.: Efficacy and cost of risk-adapted follow-up in patients after colorectal cancer surgery: a prospective, randomized and controlled trial. Eur J Surg Oncol 28 (4): 418-23, 2002.
  • Pfister DG, Benson AB, Somerfield MR: Clinical practice. Surveillance strategies after curative treatment of colorectal cancer. N Engl J Med 350 (23): 2375-82, 2004.
  • Li Destri G, Di Cataldo A, Puleo S: Colorectal cancer follow-up: useful or useless? Surg Oncol 15 (1): 1-12, 2006.
  • Kapiteijn E, Kranenbarg EK, Steup WH, et al.: Total mesorectal excision (TME) with or without preoperative radiotherapy in the treatment of primary rectal cancer. Prospective randomised trial with standard operative and histopathological techniques. Dutch ColoRectal Cancer Group. Eur J Surg 165 (5): 410-20, 1999.
  • Grossmann I, de Bock GH, Meershoek-Klein Kranenbarg WM, et al.: Carcinoembryonic antigen (CEA) measurement during follow-up for rectal carcinoma is useful even if normal levels exist before surgery. A retrospective study of CEA values in the TME trial. Eur J Surg Oncol 33 (2): 183-7, 2007.
  • Rectal Cancer Treatment (PDQ®)

    General Information About Rectal Cancer

    Incidence and Mortality

    It is difficult to separate epidemiological considerations of rectal cancer from those of colon cancer because epidemiological studies often consider colon and rectal cancer (i.e., colorectal cancer) together.

    Worldwide, colorectal cancer is the third most common form of cancer. In 2012, there were an estimated 1.36 million new cases of colorectal cancer and 694,000 deaths.

    Estimated new cases and deaths from rectal and colon cancer in the United States in 2019:

  • New cases of rectal cancer: 44,180.
  • New cases of colon cancer: 101,420.
  • Deaths: 51,020 (rectal and colon cancers combined).
  • Colorectal cancer affects men and women almost equally. Among all racial groups in the United States, African Americans have the highest sporadic colorectal cancer incidence and mortality rates.

    Anatomy

    Anatomy of the lower gastrointestinal system.

    The rectum is located within the pelvis, extending from the transitional mucosa of the anal dentate line to the sigmoid colon at the peritoneal reflection; by rigid sigmoidoscopy, the rectum measures between 10 cm and 15 cm from the anal verge.

    The location of a rectal tumor is usually indicated by the distance between the anal verge, dentate line, or anorectal ring and the lower edge of the tumor, with measurements differing depending on the use of a rigid or flexible endoscope or digital examination.

    The distance of the tumor from the anal sphincter musculature has implications for the ability to perform sphincter-sparing surgery. The bony constraints of the pelvis limit surgical access to the rectum, which results in a lesser likelihood of attaining widely negative margins and a higher risk of local recurrence.

    Risk Factors

    Increasing age is the most important risk factor for most cancers. Other risk factors for colorectal cancer include the following:

  • Family history of colorectal cancer in a first-degree relative.
  • Personal history of colorectal adenomas, colorectal cancer, or ovarian cancer.
  • Hereditary conditions, including familial adenomatous polyposis (FAP) and Lynch syndrome (hereditary nonpolyposis colorectal cancer [HNPCC]).
  • Personal history of long-standing chronic ulcerative colitis or Crohn colitis.
  • Excessive alcohol use.
  • Cigarette smoking.
  • Race/ethnicity: African American.
  • Obesity.
  • Screening

    Evidence supports screening for rectal cancer as a part of routine care for all adults aged 50 years and older, especially for those with first-degree relatives with colorectal cancer, for the following reasons:

  • Incidence of the disease in those 50 years and older.
  • Ability to identify high-risk groups.
  • Slow growth of primary lesions.
  • Better survival of patients with early-stage lesions.
  • Relative simplicity and accuracy of screening tests.
  • (Refer to the PDQ summary on Colorectal Cancer Screening for more information.)

    Clinical Features

    Similar to colon cancer, symptoms of rectal cancer may include the following:

  • Rectal bleeding.
  • Change in bowel habits.
  • Abdominal pain.
  • Intestinal obstruction.
  • Change in appetite.
  • Weight loss.
  • Weakness.
  • With the exception of obstructive symptoms, these symptoms do not necessarily correlate with the stage of disease or signify a particular diagnosis.

    Diagnostic Evaluation

    The initial clinical evaluation may include the following:

  • Physical exam and history.
  • Digital rectal exam.
  • Colonoscopy.
  • Biopsy.
  • Carcinoembryonic antigen (CEA) assay.
  • Reverse-transcription polymerase chain reaction test.
  • Immunohistochemistry.
  • Physical examination may reveal a palpable mass and bright blood in the rectum. Adenopathy, hepatomegaly, or pulmonary signs may be present with metastatic disease.

    Laboratory examination may reveal iron-deficiency anemia and electrolyte and liver function abnormalities.

    Prognostic Factors

    The prognosis of patients with rectal cancer is related to several factors, including the following:

  • Tumor adherence to or invasion of adjacent organs.
  • Presence or absence of tumor involvement in the lymph nodes and the number of positive lymph nodes.
  • Presence or absence of distant metastases.
  • Perforation or obstruction of the bowel.
  • Presence or absence of high-risk pathologic features, including the following:
  • Positive surgical margins.
  • Lymphovascular invasion.
  • Perineural invasion.
  • Poorly differentiated histology.
  • Circumferential resection margin (CRM) or depth of penetration of the tumor through the bowel wall.
  • Measured in millimeters, CRM is defined as the retroperitoneal or peritoneal adventitial soft-tissue margin closest to the deepest penetration of tumor.
  • Only disease stage (designated by tumor [T], nodal status [N], and distant metastasis [M]) has been validated as a prognostic factor in multi-institutional prospective studies.

    A major pooled analysis evaluating the impact of T and N stage and treatment on survival and relapse in patients with rectal cancer who are treated with adjuvant therapy has been published and confirms these findings.

    A large number of studies have evaluated other clinical, pathologic, and molecular parameters.

    As yet, none has been validated in multi-institutional prospective trials. For example, microsatellite instability–high, also associated with Lynch syndrome–related rectal cancer, was shown to be associated with improved survival independent of tumor stage in a population-based series of 607 patients with colorectal cancer who were 50 years old or younger at the time of diagnosis.

    In addition, gene expression profiling has been reported to be useful in predicting the response of rectal adenocarcinomas to preoperative chemoradiation therapy and in determining the prognosis of stages II and III rectal cancer after neoadjuvant 5-fluorouracil-based chemoradiation therapy.

    Racial and ethnic differences in overall survival (OS) after adjuvant therapy for rectal cancer have been observed, with shorter OS for blacks than for whites. Factors contributing to this disparity may include tumor position, type of surgical procedure, and presence of comorbid conditions.

    Follow-up After Treatment

    The primary goals of postoperative surveillance programs for rectal cancer are:

  • To assess the efficacy of initial therapy.
  • To detect new or metachronous malignancies.
  • To detect potentially curable recurrent or metastatic cancers.
  • Routine, periodic studies following treatment for rectal cancer may lead to earlier identification and management of recurrent disease.

    A statistically significant survival benefit has been demonstrated for more intensive follow-up protocols in two clinical trials. A meta-analysis that combined these two trials with four others reported a statistically significant improvement in survival for patients who were intensively followed.

    Guidelines for surveillance after initial treatment with curative intent for colorectal cancer vary between leading U.S. and European oncology societies, and optimal surveillance strategies remain uncertain.

    Large, well-designed, prospective, multi-institutional, randomized studies are required to establish an evidence-based consensus for follow-up evaluation.

    Carcinoembryonic antigen (CEA)

    Measurement of CEA, a serum glycoprotein, is frequently used in the management and follow-up of patients with rectal cancer. A review of the use of this tumor marker for rectal cancer suggests the following:

  • Serum CEA testing is not a valuable screening tool for rectal cancer because of its low sensitivity and low specificity.
  • Postoperative CEA testing is typically restricted to patients who are potential candidates for further intervention, as follows:
  • Patients with stage II or III rectal cancer (every 2–3 months for at least 2 years after diagnosis).
  • Patients with rectal cancer who would be candidates for resection of liver metastases.
  • In one Dutch retrospective study of total mesorectal excision for the treatment of rectal cancer, investigators found that the preoperative serum CEA level was normal in the majority of patients with rectal cancer, and yet, serum CEA levels rose by at least 50% in patients with recurrence. The authors concluded that serial, postoperative CEA testing cannot be discarded based on a normal preoperative serum CEA level in patients with rectal cancer.

    Other PDQ summaries containing information related to rectal cancer include the following:

  • Colorectal Cancer Prevention.
  • Colorectal Cancer Screening.
  • Gastrointestinal Stromal Tumors Treatment.
  • Genetics of Colorectal Cancer.
  • Unusual Cancers of Childhood Treatment (colorectal carcinoma).
  • ReferenceSection

  • Ferlay J, Soerjomataram I, Ervik M, et al.: GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide. Lyon, France: International Agency for Research on Cancer, 2013. IARC CancerBase No. 11. Available online. Last accessed February 27, 2020.
  • American Cancer Society: Cancer Facts and Figures 2019. Atlanta, Ga: American Cancer Society, 2019. Available online. Last accessed December 12, 2019.
  • Albano JD, Ward E, Jemal A, et al.: Cancer mortality in the United States by education level and race. J Natl Cancer Inst 99 (18): 1384-94, 2007.
  • Kauh J, Brawley OW, Berger M: Racial disparities in colorectal cancer. Curr Probl Cancer 31 (3): 123-33, 2007 May-Jun.
  • Wolpin BM, Meyerhardt JA, Mamon HJ, et al.: Adjuvant treatment of colorectal cancer. CA Cancer J Clin 57 (3): 168-85, 2007 May-Jun.
  • Libutti SK, Willett CG, Saltz LB: Cancer of the rectum. In: DeVita VT Jr, Lawrence TS, Rosenberg SA: Cancer: Principles and Practice of Oncology. 9th ed. Philadelphia, Pa: Lippincott Williams & Wilkins, 2011, pp 1127-41.
  • Johns LE, Houlston RS: A systematic review and meta-analysis of familial colorectal cancer risk. Am J Gastroenterol 96 (10): 2992-3003, 2001.
  • Imperiale TF, Juluri R, Sherer EA, et al.: A risk index for advanced neoplasia on the second surveillance colonoscopy in patients with previous adenomatous polyps. Gastrointest Endosc 80 (3): 471-8, 2014.
  • Singh H, Nugent Z, Demers A, et al.: Risk of colorectal cancer after diagnosis of endometrial cancer: a population-based study. J Clin Oncol 31 (16): 2010-5, 2013.
  • Srinivasan R, Yang YX, Rubin SC, et al.: Risk of colorectal cancer in women with a prior diagnosis of gynecologic malignancy. J Clin Gastroenterol 41 (3): 291-6, 2007.
  • Mork ME, You YN, Ying J, et al.: High Prevalence of Hereditary Cancer Syndromes in Adolescents and Young Adults With Colorectal Cancer. J Clin Oncol 33 (31): 3544-9, 2015.
  • Laukoetter MG, Mennigen R, Hannig CM, et al.: Intestinal cancer risk in Crohn's disease: a meta-analysis. J Gastrointest Surg 15 (4): 576-83, 2011.
  • Fedirko V, Tramacere I, Bagnardi V, et al.: Alcohol drinking and colorectal cancer risk: an overall and dose-response meta-analysis of published studies. Ann Oncol 22 (9): 1958-72, 2011.
  • Liang PS, Chen TY, Giovannucci E: Cigarette smoking and colorectal cancer incidence and mortality: systematic review and meta-analysis. Int J Cancer 124 (10): 2406-15, 2009.
  • Laiyemo AO, Doubeni C, Pinsky PF, et al.: Race and colorectal cancer disparities: health-care utilization vs different cancer susceptibilities. J Natl Cancer Inst 102 (8): 538-46, 2010.
  • Lansdorp-Vogelaar I, Kuntz KM, Knudsen AB, et al.: Contribution of screening and survival differences to racial disparities in colorectal cancer rates. Cancer Epidemiol Biomarkers Prev 21 (5): 728-36, 2012.
  • Ma Y, Yang Y, Wang F, et al.: Obesity and risk of colorectal cancer: a systematic review of prospective studies. PLoS One 8 (1): e53916, 2013.
  • Stein W, Farina A, Gaffney K, et al.: Characteristics of colon cancer at time of presentation. Fam Pract Res J 13 (4): 355-63, 1993.
  • Majumdar SR, Fletcher RH, Evans AT: How does colorectal cancer present? Symptoms, duration, and clues to location. Am J Gastroenterol 94 (10): 3039-45, 1999.
  • Compton CC, Greene FL: The staging of colorectal cancer: 2004 and beyond. CA Cancer J Clin 54 (6): 295-308, 2004 Nov-Dec.
  • Swanson RS, Compton CC, Stewart AK, et al.: The prognosis of T3N0 colon cancer is dependent on the number of lymph nodes examined. Ann Surg Oncol 10 (1): 65-71, 2003 Jan-Feb.
  • Le Voyer TE, Sigurdson ER, Hanlon AL, et al.: Colon cancer survival is associated with increasing number of lymph nodes analyzed: a secondary survey of intergroup trial INT-0089. J Clin Oncol 21 (15): 2912-9, 2003.
  • Prandi M, Lionetto R, Bini A, et al.: Prognostic evaluation of stage B colon cancer patients is improved by an adequate lymphadenectomy: results of a secondary analysis of a large scale adjuvant trial. Ann Surg 235 (4): 458-63, 2002.
  • Tepper JE, O'Connell MJ, Niedzwiecki D, et al.: Impact of number of nodes retrieved on outcome in patients with rectal cancer. J Clin Oncol 19 (1): 157-63, 2001.
  • Balch GC, De Meo A, Guillem JG: Modern management of rectal cancer: a 2006 update. World J Gastroenterol 12 (20): 3186-95, 2006.
  • Weiser MR, Landmann RG, Wong WD, et al.: Surgical salvage of recurrent rectal cancer after transanal excision. Dis Colon Rectum 48 (6): 1169-75, 2005.
  • Fujita S, Nakanisi Y, Taniguchi H, et al.: Cancer invasion to Auerbach's plexus is an important prognostic factor in patients with pT3-pT4 colorectal cancer. Dis Colon Rectum 50 (11): 1860-6, 2007.
  • Griffin MR, Bergstralh EJ, Coffey RJ, et al.: Predictors of survival after curative resection of carcinoma of the colon and rectum. Cancer 60 (9): 2318-24, 1987.
  • DeVita VT Jr, Lawrence TS, Rosenberg SA: Cancer: Principles and Practice of Oncology. 9th ed. Philadelphia, Pa: Lippincott Williams & Wilkins, 2011.
  • Wieder HA, Rosenberg R, Lordick F, et al.: Rectal cancer: MR imaging before neoadjuvant chemotherapy and radiation therapy for prediction of tumor-free circumferential resection margins and long-term survival. Radiology 243 (3): 744-51, 2007.
  • Gunderson LL, Sargent DJ, Tepper JE, et al.: Impact of T and N stage and treatment on survival and relapse in adjuvant rectal cancer: a pooled analysis. J Clin Oncol 22 (10): 1785-96, 2004.
  • McLeod HL, Murray GI: Tumour markers of prognosis in colorectal cancer. Br J Cancer 79 (2): 191-203, 1999.
  • Jen J, Kim H, Piantadosi S, et al.: Allelic loss of chromosome 18q and prognosis in colorectal cancer. N Engl J Med 331 (4): 213-21, 1994.
  • Lanza G, Matteuzzi M, Gafá R, et al.: Chromosome 18q allelic loss and prognosis in stage II and III colon cancer. Int J Cancer 79 (4): 390-5, 1998.
  • Roth JA: p53 prognostication: paradigm or paradox? Clin Cancer Res 5 (11): 3345, 1999.
  • Nishio H, Hamady ZZ, Malik HZ, et al.: Outcome following repeat liver resection for colorectal liver metastases. Eur J Surg Oncol 33 (6): 729-34, 2007.
  • Edler D, Hallström M, Johnston PG, et al.: Thymidylate synthase expression: an independent prognostic factor for local recurrence, distant metastasis, disease-free and overall survival in rectal cancer. Clin Cancer Res 6 (4): 1378-84, 2000.
  • Popat S, Chen Z, Zhao D, et al.: A prospective, blinded analysis of thymidylate synthase and p53 expression as prognostic markers in the adjuvant treatment of colorectal cancer. Ann Oncol 17 (12): 1810-7, 2006.
  • Gryfe R, Kim H, Hsieh ET, et al.: Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 342 (2): 69-77, 2000.
  • Liersch T, Langer C, Ghadimi BM, et al.: Lymph node status and TS gene expression are prognostic markers in stage II/III rectal cancer after neoadjuvant fluorouracil-based chemoradiotherapy. J Clin Oncol 24 (25): 4062-8, 2006.
  • Ghadimi BM, Grade M, Difilippantonio MJ, et al.: Effectiveness of gene expression profiling for response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. J Clin Oncol 23 (9): 1826-38, 2005.
  • Dignam JJ, Ye Y, Colangelo L, et al.: Prognosis after rectal cancer in blacks and whites participating in adjuvant therapy randomized trials. J Clin Oncol 21 (3): 413-20, 2003.
  • Abir F, Alva S, Longo WE, et al.: The postoperative surveillance of patients with colon cancer and rectal cancer. Am J Surg 192 (1): 100-8, 2006.
  • Martin EW, Minton JP, Carey LC: CEA-directed second-look surgery in the asymptomatic patient after primary resection of colorectal carcinoma. Ann Surg 202 (3): 310-7, 1985.
  • Bruinvels DJ, Stiggelbout AM, Kievit J, et al.: Follow-up of patients with colorectal cancer. A meta-analysis. Ann Surg 219 (2): 174-82, 1994.
  • Lautenbach E, Forde KA, Neugut AI: Benefits of colonoscopic surveillance after curative resection of colorectal cancer. Ann Surg 220 (2): 206-11, 1994.
  • Khoury DA, Opelka FG, Beck DE, et al.: Colon surveillance after colorectal cancer surgery. Dis Colon Rectum 39 (3): 252-6, 1996.
  • Pietra N, Sarli L, Costi R, et al.: Role of follow-up in management of local recurrences of colorectal cancer: a prospective, randomized study. Dis Colon Rectum 41 (9): 1127-33, 1998.
  • Secco GB, Fardelli R, Gianquinto D, et al.: Efficacy and cost of risk-adapted follow-up in patients after colorectal cancer surgery: a prospective, randomized and controlled trial. Eur J Surg Oncol 28 (4): 418-23, 2002.
  • Pfister DG, Benson AB, Somerfield MR: Clinical practice. Surveillance strategies after curative treatment of colorectal cancer. N Engl J Med 350 (23): 2375-82, 2004.
  • Li Destri G, Di Cataldo A, Puleo S: Colorectal cancer follow-up: useful or useless? Surg Oncol 15 (1): 1-12, 2006.
  • Kapiteijn E, Kranenbarg EK, Steup WH, et al.: Total mesorectal excision (TME) with or without preoperative radiotherapy in the treatment of primary rectal cancer. Prospective randomised trial with standard operative and histopathological techniques. Dutch ColoRectal Cancer Group. Eur J Surg 165 (5): 410-20, 1999.
  • Grossmann I, de Bock GH, Meershoek-Klein Kranenbarg WM, et al.: Carcinoembryonic antigen (CEA) measurement during follow-up for rectal carcinoma is useful even if normal levels exist before surgery. A retrospective study of CEA values in the TME trial. Eur J Surg Oncol 33 (2): 183-7, 2007.
  • 直肠癌治疗(PDQ®)

    直肠癌的细胞学分类和病理学

    在美国,绝大多数的直肠癌是腺癌。其他组织学类型占结直肠肿瘤的2%-5%。

    世界卫生组织对结直肠癌的分类包括:

    上皮肿瘤

  • 管状
  • 绒毛状
  • 管状绒毛状
  • 锯齿形
  • 腺癌
  • 黏液腺癌
  • 印戒细胞癌
  • 小细胞癌
  • 腺鳞癌
  • 髓样癌
  • 未分化癌
  • 肠嗜铬细胞,产生5-羟色胺的肿瘤
  • L-细胞,胰高血糖素样肽和胰多肽/肽YY-分泌肿瘤
  • 其他
  • 低级别腺上皮内瘤变
  • 高级别腺上皮内瘤变
  • 其他
  • 非上皮性肿瘤

  • 脂肪瘤
  • 平滑肌瘤
  • 胃肠道间质瘤(更多信息,请参考PDQ摘要“胃肠道间质瘤治疗”相关内容。)
  • 平滑肌肉瘤
  • 血管肉瘤
  • 卡波西肉瘤(更多信息,请参考PDQ摘要“卡波西肉瘤治疗”相关内容。)
  • 黑色素瘤(更多信息,请参考PDQ摘要“黑色素瘤治疗”相关内容。)
  • 其他
  • 粘膜相关淋巴组织型边缘区B细胞淋巴瘤
  • 套细胞淋巴瘤
  • 弥漫性大B细胞淋巴瘤
  • 伯基特淋巴瘤
  • 伯基特样/非典型伯基特淋巴瘤
  • (更多信息,请参考PDQ摘要“非霍奇金淋巴瘤治疗”相关内容。)

    参考文献

  • Kang H, O'Connell JB, Leonardi MJ, et al.: Rare tumors of the colon and rectum: a national review. Int J Colorectal Dis 22 (2): 183-9, 2007.
  • Hamilton SR, Aaltonen LA: Pathology and Genetics of Tumours of the Digestive System. Lyon, France: International Agency for Research on Cancer, 2000.
  • Rectal Cancer Treatment (PDQ®)

    Cellular Classification and Pathology of Rectal Cancer

    Adenocarcinomas account for the vast majority of rectal tumors in the United States. Other histologic types account for an estimated 2% to 5% of colorectal tumors.

    The World Health Organization classification of tumors of the colon and rectum includes the following:

    Epithelial Tumors

  • Tubular.
  • Villous.
  • Tubulovillous.
  • Serrated.
  • Adenocarcinoma.
  • Mucinous adenocarcinoma.
  • Signet-ring cell carcinoma.
  • Small cell carcinoma.
  • Adenosquamous carcinoma.
  • Medullary carcinoma.
  • Undifferentiated carcinoma.
  • Enterochromaffin-cell, serotonin-producing neoplasm.
  • L-cell, glucagon-like peptide and pancreatic polypeptide/peptide YY–producing tumor.
  • Others.
  • Low-grade glandular intraepithelial neoplasia.
  • High-grade glandular intraepithelial neoplasia.
  • Others.
  • Nonepithelial Tumors

  • Lipoma.
  • Leiomyoma.
  • Gastrointestinal stromal tumor. (Refer to the PDQ summary on Gastrointestinal Stromal Tumors Treatment for more information.)
  • Leiomyosarcoma.
  • Angiosarcoma.
  • Kaposi sarcoma. (Refer to the PDQ summary on Kaposi Sarcoma Treatment for more information.)
  • Melanoma. (Refer to the PDQ summary on Melanoma Treatment for more information.)
  • Others.
  • Marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue type.
  • Mantle cell lymphoma.
  • Diffuse large B-cell lymphoma.
  • Burkitt lymphoma.
  • Burkitt-like/atypical Burkitt lymphoma.
  • (Refer to the PDQ summary on Adult Non-Hodgkin Lymphoma Treatment for more information.)

    ReferenceSection

  • Kang H, O'Connell JB, Leonardi MJ, et al.: Rare tumors of the colon and rectum: a national review. Int J Colorectal Dis 22 (2): 183-9, 2007.
  • Hamilton SR, Aaltonen LA: Pathology and Genetics of Tumours of the Digestive System. Lyon, France: International Agency for Research on Cancer, 2000.
  • 直肠癌治疗(PDQ®)

    直肠癌的临床分期

    准确的临床分期可提供直肠原发肿瘤的位置、大小以及是否有转移病灶,转移灶大小、数目和位置等重要信息。准确的初始分期可以帮助确定手术类型和新辅助治疗与否,从而最大限度地提高手术切缘阴性率,并最终影响临床疗效。

  • 肿瘤深度
  • 与肛门括约肌的距离
  • 环周切缘阴性的潜在可能
  • 侵犯区域淋巴结或相邻器官
  • 临床分期评估

    临床评估和分期措施可能包括:

  • 直肠指诊(DRE):DRE和/或直肠阴道检查和直肠镜检查,以确定是否可行保肛手术。
  • 结肠镜检查:完整的结肠镜检查以排除肠道其他部位的癌症。
  • 计算机断层扫描(CT):全身CT扫描以排除转移性疾病。
  • 磁共振成像(MRI):腹部和盆腔MRI有助于明确肿瘤的侵透深度以及获取环周切缘阴性,并确定局部区域淋巴结转移和远处转移情况。MRI对于骶骨局部复发具有重要意义。
  • 直肠内超声:采用硬管式或软管式内镜进行直肠内超声检查病灶,以发现肿瘤浸润深度和局部淋巴结转移情况。
  • 正电子发射断层扫描(PET):PET可对远处转移性疾病成像。
  • 癌胚抗原(CEA):血清CEA水平以评估预后和临床疗效。
  • 在直肠癌的肿瘤(T)分期中,数项研究表明直肠内超声的准确率达80%~95%,而CT和MRI的准确率分别为65%~75%和75%~85%。通过直肠内超声确定受累转移性淋巴结的准确率约为70%-75%,而CT和MRI分别为55%-65%和60%-70%。

    在一项纳入84项研究的荟萃分析中,就评估淋巴结(N)方面,没有发现直肠内超声、CT和MRI三者中的任何一种明显优于其他两种方法。

    硬管式与软管式内镜的直肠内超声相比,二者在T和N分期上方面具有同样的准确率;然而,有一些技术上的问题,直肠内超声对T分期和N分期可能会得出不确定或不准确的结论。因此,可以考虑通过MRI或软管式直肠内超声进行进一步评估。

    CRM被定义为腹膜后或腹膜外膜软组织边界距离肿瘤浸润最深部位的最短距离

    AJCC临床分期和TNM定义

    AJCC采用TNM分类方法对直肠癌进行临床分期。

    同种分类方法适用于临床分期和病理分期。

    制定临床决策时,应参考TNM分级(肿瘤、淋巴结和转移癌),而不是陈旧的Dukes或改良版Astler-Coller分类体系。

    该分期体系常用于下列癌症,包括结肠和直肠的腺癌、高级神经内分泌癌和鳞癌。未采用该分期系统的癌症包括以下组织病理学类型的癌症:阑尾癌、肛门癌和高分化神经内分泌肿瘤(类癌)。

    (更多信息,请参考PDQ摘要“肛门癌治疗和胃肠道类癌治疗”相关内容。)

    淋巴结状况

    AJCC和一个美国国家癌症研究所资助的工作组建议,针对未接受新辅助治疗的患者,在根治性结肠和直肠切除术中至少应检查10到14个淋巴结。在肿瘤姑息性切除或术前接受放疗的患者中,淋巴结数目要求可少一些。

    术中检测淋巴结的数目可以反映淋巴血管、肠系膜的侵袭程度,还有助于肿瘤的病理诊断。

    回顾性研究INT-0089(EST-2288)显示结直肠癌手术中检查的淋巴结数目与患者的临床转归具有相关性。

    最近提出了一种新的淋巴结阳性直肠癌-转移分期方案

    表1. TNM阶段0的定义表2. TNM阶段 I 的定义表3. TNM IIA, IIB, IIC 阶段 的定义表4. TNM  IIIA, IIIB, IIIC 阶段的定义表5. TNM IVA, IVB, IVC 阶段 的定义
    分期TNM说明图示
    分期TNM说明图示
    分期TNM说明图示
    分期TNM说明图示
    分期TNM说明图示
    0Tis, N0, M0Tis=原位癌,粘膜内层癌(侵犯固有层,但未穿透黏膜肌层)。
    N0=无区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(不在病理诊断范围内。)
    分期TNM说明图示
    IT1–T2, N0, M0T1=肿瘤侵犯黏膜下层(穿透黏膜肌层,但未穿透固有肌层)。
    T2=肿瘤侵犯固有肌层。
    N0=无区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    分期TNM说明图示
    IIAT3, N0, M0T3=肿瘤穿透固有肌层进入结直肠旁组织。
    N0=无区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    IIBT4a, N0, M0T4a=肿瘤穿透脏层腹膜,包括穿透肿瘤的严重肠穿孔,接着肿瘤通过炎症区域侵袭到脏层腹膜表层
    N0=无区域淋巴结转移
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    IICT4b, N0, M0T4b=肿瘤直接侵犯或粘连于相邻器官或结构。
    N0=无区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    分期TNM说明图示
    IIIAT1, N2a, M0T1=肿瘤侵犯黏膜下层(穿透黏膜肌层,但未穿透固有肌层)。
    N2a= 4-6枚区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    T1–2, N1/N1c, M0T1=肿瘤侵犯黏膜下层(穿透黏膜肌层,但未穿透固有肌层)。
    T2=肿瘤侵犯固有肌层。
    N1=1-3枚区域淋巴结转移(淋巴结内癌结节≥0.2mm),或任意数目的淋巴结出现肿瘤沉积且可识别的淋巴结均为阴性。
    –N1c=无区域淋巴结转移,但浆膜下、肠系膜或无腹膜覆盖的结肠旁组织,或直肠旁/直肠系膜组织出现肿瘤种植。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    IIIBT1–T2, N2b, M0T1=肿瘤侵犯黏膜下层(穿透黏膜肌层,但未穿透固有肌层)。
    T2=肿瘤侵犯固有肌层。
    N2b=7枚或以上区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    T2–T3, N2a, M0T2=肿瘤侵犯固有肌层。
    T3=肿瘤穿透固有肌层进入结直肠旁组织。
    N2a=4-6枚区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    T3–T4a, N1/N1c, M0T3=肿瘤穿透固有肌层进入结直肠旁组织。
    T4=肿瘤直接侵犯或粘连于相邻器官或结构。
    –T4a=肿瘤穿透脏层腹膜(包括肿瘤穿透肠壁,并通过炎症部位连续侵犯脏层腹膜表层)。
    N1=1-3枚区域淋巴结转移(淋巴结内癌结节≥0.2mm),或任意数目的淋巴结出现肿瘤沉积且可识别的淋巴结均为阴性。
    –N1c= 无区域淋巴结转移,但浆膜下、肠系膜或无腹膜覆盖的结肠旁组织,或直肠旁/直肠系膜组织出现肿瘤种植。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴)
    IIICT3–T4a, N2b, M0T3=肿瘤穿透固有肌层进入结直肠旁组织。
    T4=肿瘤直接侵犯或粘连于相邻器官或结构。
    –T4a=肿瘤穿透脏层腹膜(包括肿瘤穿透肠壁,并通过炎症部位连续侵犯脏层腹膜表层)。
    N2b=7枚或以上区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴)
    T4a, N2a, M0T4a=肿瘤穿透脏层腹膜(包括肿瘤穿透肠壁,并通过炎症部位连续侵犯脏层腹膜表层)。
    N2a=4-6枚区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴)
    T4b, N1–N2, M0T4b=肿瘤直接侵犯或粘连于相邻器官或结构。
    N1=1-3枚区域淋巴结转移(淋巴结内癌结节≥0.2mm),或任意数目的淋巴结出现肿瘤沉积且可识别的淋巴结均为阴性。
    –N1a=1枚区域淋巴结转移。
    –N1b=2-3枚区域淋巴结转移。
    –N1c= 无区域淋巴结转移,但浆膜下、肠系膜或无腹膜覆盖的结肠旁组织,或直肠旁/直肠系膜组织出现肿瘤种植。
    N2=4枚或以上区域淋巴结转移。
    –N2a= 4-6枚区域淋巴结转移。
    –N2b=7枚或以上区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴)
    分期TNM说明图示
    IVA任何T、任何N、M1aTX=原发肿瘤无法评估。
    T0=无原发肿瘤证据。
    Tis=原位癌,粘膜内癌(侵犯固有层,但未穿透黏膜肌层)。
    T1=肿瘤侵犯黏膜下层(穿透黏膜肌层,但未穿透固有肌层)。
    T2=肿瘤侵犯固有肌层。
    T3=肿瘤穿透固有肌层进入结直肠旁组织。
    T4=肿瘤直接侵犯或粘连于相邻器官或结构。
    –T4a=肿瘤穿透脏层腹膜(包括肿瘤穿透引起的肠穿孔,以及肿瘤通过炎症区域侵袭到脏层腹膜表层)
    –T4b=肿瘤直接侵犯或粘连于相邻器官或结构。
    NX=区域淋巴结无法评估。
    N0=无区域淋巴结转移。
    N1=1-3枚区域淋巴结转移(淋巴结内肿瘤≥0.2mm),或任意数目的淋巴结出现肿瘤沉积且可识别的淋巴结均为阴性。
    –N1a=1枚区域淋巴结转移。
    –N1b=2-3枚区域淋巴结转移。
    –N1c= 无区域淋巴结转移,但浆膜下、肠系膜或无腹膜覆盖的结肠旁组织,或直肠旁/直肠系膜组织出现癌结节。
    N2=4枚或以上区域淋巴结转移。
    –N2a= 4-6枚区域淋巴结转移。
    –N2b=7枚或以上区域淋巴结转移。
    M1a=单个部位或器官转移,未见腹膜转移。
    IVB任何 T、任何 N、 M1b任何T=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的T说明部分。
    任何N=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的N说明部分。
    M1b=2个或2个以上部位或器官转移,未见腹膜转移。
    IVC任何 T、任何 N、 M1c任何T=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的T说明部分。
    任何N=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的N说明部分。
    M1c=仅腹膜转移或/伴随其他部位或器官转移。
    T=原发肿瘤;N=局部淋巴结;M=远处转移。
    a 已取得AJCC授权复印:Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74。
    上标b和c的释义参见表5末尾。
    T=原发肿瘤;N=局部淋巴结;M=远处转移。
    a 已取得AJCC授权复印:Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74。
    上标b和c的释义参见表5末尾。
    T=原发肿瘤;N=局部淋巴结;M=远处转移。
    a 已取得AJCC授权复印:Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74。
    上标b和c的释义参见表5末尾。
    T=原发肿瘤;N=局部淋巴结;M=远处转移。
    a 已取得AJCC授权复印:Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74。
    上标b和c的释义参见表5末尾。
    T=原发肿瘤;N=局部淋巴结;M=远处转移。
    a 已取得AJCC授权复印:Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74。
    b T4中的直接侵犯包括侵犯其他器官或穿透浆膜直接侵犯结直肠其他部位,并经内镜确诊(如通过盲肠癌侵犯乙状结肠),或腹膜后腹膜下癌,或穿透固有肌层直接侵犯其他器官和结构(如降结肠后壁肿瘤侵犯左肾或侧腹壁;或直肠中远端肿瘤侵犯前列腺、精索、宫颈和阴道)。
    c 肿瘤粘连于其他器官和结构,大体上归为cT4b。然而,如果镜下观察未见肿瘤粘连,按照肠壁侵犯深度归为pT1-4a。应将V和L分类标准用于鉴别是否伴血管和淋巴管侵犯,而PN预后影响因素应用于周围神经侵犯。
    表2. TNM阶段 I 的定义表3. TNM IIA, IIB, IIC 阶段 的定义表4. TNM  IIIA, IIIB, IIIC 阶段的定义表5. TNM IVA, IVB, IVC 阶段 的定义
    分期TNM说明图示
    分期TNM说明图示
    分期TNM说明图示
    分期TNM说明图示
    IT1–T2, N0, M0T1=肿瘤侵犯黏膜下层(穿透黏膜肌层,但未穿透固有肌层)。
    T2=肿瘤侵犯固有肌层。
    N0=无区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    分期TNM说明图示
    IIAT3, N0, M0T3=肿瘤穿透固有肌层进入结直肠旁组织。
    N0=无区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    IIBT4a, N0, M0T4a=肿瘤穿透脏层腹膜,包括穿透肿瘤的严重肠穿孔,接着肿瘤通过炎症区域侵袭到脏层腹膜表层
    N0=无区域淋巴结转移
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    IICT4b, N0, M0T4b=肿瘤直接侵犯或粘连于相邻器官或结构。
    N0=无区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    分期TNM说明图示
    IIIAT1, N2a, M0T1=肿瘤侵犯黏膜下层(穿透黏膜肌层,但未穿透固有肌层)。
    N2a= 4-6枚区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    T1–2, N1/N1c, M0T1=肿瘤侵犯黏膜下层(穿透黏膜肌层,但未穿透固有肌层)。
    T2=肿瘤侵犯固有肌层。
    N1=1-3枚区域淋巴结转移(淋巴结内癌结节≥0.2mm),或任意数目的淋巴结出现肿瘤沉积且可识别的淋巴结均为阴性。
    –N1c=无区域淋巴结转移,但浆膜下、肠系膜或无腹膜覆盖的结肠旁组织,或直肠旁/直肠系膜组织出现肿瘤种植。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    IIIBT1–T2, N2b, M0T1=肿瘤侵犯黏膜下层(穿透黏膜肌层,但未穿透固有肌层)。
    T2=肿瘤侵犯固有肌层。
    N2b=7枚或以上区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    T2–T3, N2a, M0T2=肿瘤侵犯固有肌层。
    T3=肿瘤穿透固有肌层进入结直肠旁组织。
    N2a=4-6枚区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    T3–T4a, N1/N1c, M0T3=肿瘤穿透固有肌层进入结直肠旁组织。
    T4=肿瘤直接侵犯或粘连于相邻器官或结构。
    –T4a=肿瘤穿透脏层腹膜(包括肿瘤穿透肠壁,并通过炎症部位连续侵犯脏层腹膜表层)。
    N1=1-3枚区域淋巴结转移(淋巴结内癌结节≥0.2mm),或任意数目的淋巴结出现肿瘤沉积且可识别的淋巴结均为阴性。
    –N1c= 无区域淋巴结转移,但浆膜下、肠系膜或无腹膜覆盖的结肠旁组织,或直肠旁/直肠系膜组织出现肿瘤种植。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴)
    IIICT3–T4a, N2b, M0T3=肿瘤穿透固有肌层进入结直肠旁组织。
    T4=肿瘤直接侵犯或粘连于相邻器官或结构。
    –T4a=肿瘤穿透脏层腹膜(包括肿瘤穿透肠壁,并通过炎症部位连续侵犯脏层腹膜表层)。
    N2b=7枚或以上区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴)
    T4a, N2a, M0T4a=肿瘤穿透脏层腹膜(包括肿瘤穿透肠壁,并通过炎症部位连续侵犯脏层腹膜表层)。
    N2a=4-6枚区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴)
    T4b, N1–N2, M0T4b=肿瘤直接侵犯或粘连于相邻器官或结构。
    N1=1-3枚区域淋巴结转移(淋巴结内癌结节≥0.2mm),或任意数目的淋巴结出现肿瘤沉积且可识别的淋巴结均为阴性。
    –N1a=1枚区域淋巴结转移。
    –N1b=2-3枚区域淋巴结转移。
    –N1c= 无区域淋巴结转移,但浆膜下、肠系膜或无腹膜覆盖的结肠旁组织,或直肠旁/直肠系膜组织出现肿瘤种植。
    N2=4枚或以上区域淋巴结转移。
    –N2a= 4-6枚区域淋巴结转移。
    –N2b=7枚或以上区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴)
    分期TNM说明图示
    IVA任何T、任何N、M1aTX=原发肿瘤无法评估。
    T0=无原发肿瘤证据。
    Tis=原位癌,粘膜内癌(侵犯固有层,但未穿透黏膜肌层)。
    T1=肿瘤侵犯黏膜下层(穿透黏膜肌层,但未穿透固有肌层)。
    T2=肿瘤侵犯固有肌层。
    T3=肿瘤穿透固有肌层进入结直肠旁组织。
    T4=肿瘤直接侵犯或粘连于相邻器官或结构。
    –T4a=肿瘤穿透脏层腹膜(包括肿瘤穿透引起的肠穿孔,以及肿瘤通过炎症区域侵袭到脏层腹膜表层)
    –T4b=肿瘤直接侵犯或粘连于相邻器官或结构。
    NX=区域淋巴结无法评估。
    N0=无区域淋巴结转移。
    N1=1-3枚区域淋巴结转移(淋巴结内肿瘤≥0.2mm),或任意数目的淋巴结出现肿瘤沉积且可识别的淋巴结均为阴性。
    –N1a=1枚区域淋巴结转移。
    –N1b=2-3枚区域淋巴结转移。
    –N1c= 无区域淋巴结转移,但浆膜下、肠系膜或无腹膜覆盖的结肠旁组织,或直肠旁/直肠系膜组织出现癌结节。
    N2=4枚或以上区域淋巴结转移。
    –N2a= 4-6枚区域淋巴结转移。
    –N2b=7枚或以上区域淋巴结转移。
    M1a=单个部位或器官转移,未见腹膜转移。
    IVB任何 T、任何 N、 M1b任何T=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的T说明部分。
    任何N=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的N说明部分。
    M1b=2个或2个以上部位或器官转移,未见腹膜转移。
    IVC任何 T、任何 N、 M1c任何T=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的T说明部分。
    任何N=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的N说明部分。
    M1c=仅腹膜转移或/伴随其他部位或器官转移。
    T=原发肿瘤;N=局部淋巴结;M=远处转移。
    a 已取得AJCC授权复印:Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74。
    上标b和c的释义参见表5末尾。
    T=原发肿瘤;N=局部淋巴结;M=远处转移。
    a 已取得AJCC授权复印:Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74。
    上标b和c的释义参见表5末尾。
    T=原发肿瘤;N=局部淋巴结;M=远处转移。
    a 已取得AJCC授权复印:Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74。
    上标b和c的释义参见表5末尾。
    T=原发肿瘤;N=局部淋巴结;M=远处转移。
    a 已取得AJCC授权复印:Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74。
    b T4中的直接侵犯包括侵犯其他器官或穿透浆膜直接侵犯结直肠其他部位,并经内镜确诊(如通过盲肠癌侵犯乙状结肠),或腹膜后腹膜下癌,或穿透固有肌层直接侵犯其他器官和结构(如降结肠后壁肿瘤侵犯左肾或侧腹壁;或直肠中远端肿瘤侵犯前列腺、精索、宫颈和阴道)。
    c 肿瘤粘连于其他器官和结构,大体上归为cT4b。然而,如果镜下观察未见肿瘤粘连,按照肠壁侵犯深度归为pT1-4a。应将V和L分类标准用于鉴别是否伴血管和淋巴管侵犯,而PN预后影响因素应用于周围神经侵犯。
    表3. TNM IIA, IIB, IIC 阶段 的定义表4. TNM  IIIA, IIIB, IIIC 阶段的定义表5. TNM IVA, IVB, IVC 阶段 的定义
    分期TNM说明图示
    分期TNM说明图示
    分期TNM说明图示
    IIAT3, N0, M0T3=肿瘤穿透固有肌层进入结直肠旁组织。
    N0=无区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    IIBT4a, N0, M0T4a=肿瘤穿透脏层腹膜,包括穿透肿瘤的严重肠穿孔,接着肿瘤通过炎症区域侵袭到脏层腹膜表层
    N0=无区域淋巴结转移
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    IICT4b, N0, M0T4b=肿瘤直接侵犯或粘连于相邻器官或结构。
    N0=无区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    分期TNM说明图示
    IIIAT1, N2a, M0T1=肿瘤侵犯黏膜下层(穿透黏膜肌层,但未穿透固有肌层)。
    N2a= 4-6枚区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    T1–2, N1/N1c, M0T1=肿瘤侵犯黏膜下层(穿透黏膜肌层,但未穿透固有肌层)。
    T2=肿瘤侵犯固有肌层。
    N1=1-3枚区域淋巴结转移(淋巴结内癌结节≥0.2mm),或任意数目的淋巴结出现肿瘤沉积且可识别的淋巴结均为阴性。
    –N1c=无区域淋巴结转移,但浆膜下、肠系膜或无腹膜覆盖的结肠旁组织,或直肠旁/直肠系膜组织出现肿瘤种植。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    IIIBT1–T2, N2b, M0T1=肿瘤侵犯黏膜下层(穿透黏膜肌层,但未穿透固有肌层)。
    T2=肿瘤侵犯固有肌层。
    N2b=7枚或以上区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    T2–T3, N2a, M0T2=肿瘤侵犯固有肌层。
    T3=肿瘤穿透固有肌层进入结直肠旁组织。
    N2a=4-6枚区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    T3–T4a, N1/N1c, M0T3=肿瘤穿透固有肌层进入结直肠旁组织。
    T4=肿瘤直接侵犯或粘连于相邻器官或结构。
    –T4a=肿瘤穿透脏层腹膜(包括肿瘤穿透肠壁,并通过炎症部位连续侵犯脏层腹膜表层)。
    N1=1-3枚区域淋巴结转移(淋巴结内癌结节≥0.2mm),或任意数目的淋巴结出现肿瘤沉积且可识别的淋巴结均为阴性。
    –N1c= 无区域淋巴结转移,但浆膜下、肠系膜或无腹膜覆盖的结肠旁组织,或直肠旁/直肠系膜组织出现肿瘤种植。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴)
    IIICT3–T4a, N2b, M0T3=肿瘤穿透固有肌层进入结直肠旁组织。
    T4=肿瘤直接侵犯或粘连于相邻器官或结构。
    –T4a=肿瘤穿透脏层腹膜(包括肿瘤穿透肠壁,并通过炎症部位连续侵犯脏层腹膜表层)。
    N2b=7枚或以上区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴)
    T4a, N2a, M0T4a=肿瘤穿透脏层腹膜(包括肿瘤穿透肠壁,并通过炎症部位连续侵犯脏层腹膜表层)。
    N2a=4-6枚区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴)
    T4b, N1–N2, M0T4b=肿瘤直接侵犯或粘连于相邻器官或结构。
    N1=1-3枚区域淋巴结转移(淋巴结内癌结节≥0.2mm),或任意数目的淋巴结出现肿瘤沉积且可识别的淋巴结均为阴性。
    –N1a=1枚区域淋巴结转移。
    –N1b=2-3枚区域淋巴结转移。
    –N1c= 无区域淋巴结转移,但浆膜下、肠系膜或无腹膜覆盖的结肠旁组织,或直肠旁/直肠系膜组织出现肿瘤种植。
    N2=4枚或以上区域淋巴结转移。
    –N2a= 4-6枚区域淋巴结转移。
    –N2b=7枚或以上区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴)
    分期TNM说明图示
    IVA任何T、任何N、M1aTX=原发肿瘤无法评估。
    T0=无原发肿瘤证据。
    Tis=原位癌,粘膜内癌(侵犯固有层,但未穿透黏膜肌层)。
    T1=肿瘤侵犯黏膜下层(穿透黏膜肌层,但未穿透固有肌层)。
    T2=肿瘤侵犯固有肌层。
    T3=肿瘤穿透固有肌层进入结直肠旁组织。
    T4=肿瘤直接侵犯或粘连于相邻器官或结构。
    –T4a=肿瘤穿透脏层腹膜(包括肿瘤穿透引起的肠穿孔,以及肿瘤通过炎症区域侵袭到脏层腹膜表层)
    –T4b=肿瘤直接侵犯或粘连于相邻器官或结构。
    NX=区域淋巴结无法评估。
    N0=无区域淋巴结转移。
    N1=1-3枚区域淋巴结转移(淋巴结内肿瘤≥0.2mm),或任意数目的淋巴结出现肿瘤沉积且可识别的淋巴结均为阴性。
    –N1a=1枚区域淋巴结转移。
    –N1b=2-3枚区域淋巴结转移。
    –N1c= 无区域淋巴结转移,但浆膜下、肠系膜或无腹膜覆盖的结肠旁组织,或直肠旁/直肠系膜组织出现癌结节。
    N2=4枚或以上区域淋巴结转移。
    –N2a= 4-6枚区域淋巴结转移。
    –N2b=7枚或以上区域淋巴结转移。
    M1a=单个部位或器官转移,未见腹膜转移。
    IVB任何 T、任何 N、 M1b任何T=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的T说明部分。
    任何N=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的N说明部分。
    M1b=2个或2个以上部位或器官转移,未见腹膜转移。
    IVC任何 T、任何 N、 M1c任何T=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的T说明部分。
    任何N=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的N说明部分。
    M1c=仅腹膜转移或/伴随其他部位或器官转移。
    T=原发肿瘤;N=局部淋巴结;M=远处转移。
    a 已取得AJCC授权复印:Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74。
    上标b和c的释义参见表5末尾。
    T=原发肿瘤;N=局部淋巴结;M=远处转移。
    a 已取得AJCC授权复印:Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74。
    上标b和c的释义参见表5末尾。
    T=原发肿瘤;N=局部淋巴结;M=远处转移。
    a 已取得AJCC授权复印:Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74。
    b T4中的直接侵犯包括侵犯其他器官或穿透浆膜直接侵犯结直肠其他部位,并经内镜确诊(如通过盲肠癌侵犯乙状结肠),或腹膜后腹膜下癌,或穿透固有肌层直接侵犯其他器官和结构(如降结肠后壁肿瘤侵犯左肾或侧腹壁;或直肠中远端肿瘤侵犯前列腺、精索、宫颈和阴道)。
    c 肿瘤粘连于其他器官和结构,大体上归为cT4b。然而,如果镜下观察未见肿瘤粘连,按照肠壁侵犯深度归为pT1-4a。应将V和L分类标准用于鉴别是否伴血管和淋巴管侵犯,而PN预后影响因素应用于周围神经侵犯。
    表4. TNM  IIIA, IIIB, IIIC 阶段的定义表5. TNM IVA, IVB, IVC 阶段 的定义
    分期TNM说明图示
    分期TNM说明图示
    IIIAT1, N2a, M0T1=肿瘤侵犯黏膜下层(穿透黏膜肌层,但未穿透固有肌层)。
    N2a= 4-6枚区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    T1–2, N1/N1c, M0T1=肿瘤侵犯黏膜下层(穿透黏膜肌层,但未穿透固有肌层)。
    T2=肿瘤侵犯固有肌层。
    N1=1-3枚区域淋巴结转移(淋巴结内癌结节≥0.2mm),或任意数目的淋巴结出现肿瘤沉积且可识别的淋巴结均为阴性。
    –N1c=无区域淋巴结转移,但浆膜下、肠系膜或无腹膜覆盖的结肠旁组织,或直肠旁/直肠系膜组织出现肿瘤种植。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    IIIBT1–T2, N2b, M0T1=肿瘤侵犯黏膜下层(穿透黏膜肌层,但未穿透固有肌层)。
    T2=肿瘤侵犯固有肌层。
    N2b=7枚或以上区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    T2–T3, N2a, M0T2=肿瘤侵犯固有肌层。
    T3=肿瘤穿透固有肌层进入结直肠旁组织。
    N2a=4-6枚区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴。)
    T3–T4a, N1/N1c, M0T3=肿瘤穿透固有肌层进入结直肠旁组织。
    T4=肿瘤直接侵犯或粘连于相邻器官或结构。
    –T4a=肿瘤穿透脏层腹膜(包括肿瘤穿透肠壁,并通过炎症部位连续侵犯脏层腹膜表层)。
    N1=1-3枚区域淋巴结转移(淋巴结内癌结节≥0.2mm),或任意数目的淋巴结出现肿瘤沉积且可识别的淋巴结均为阴性。
    –N1c= 无区域淋巴结转移,但浆膜下、肠系膜或无腹膜覆盖的结肠旁组织,或直肠旁/直肠系膜组织出现肿瘤种植。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴)
    IIICT3–T4a, N2b, M0T3=肿瘤穿透固有肌层进入结直肠旁组织。
    T4=肿瘤直接侵犯或粘连于相邻器官或结构。
    –T4a=肿瘤穿透脏层腹膜(包括肿瘤穿透肠壁,并通过炎症部位连续侵犯脏层腹膜表层)。
    N2b=7枚或以上区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴)
    T4a, N2a, M0T4a=肿瘤穿透脏层腹膜(包括肿瘤穿透肠壁,并通过炎症部位连续侵犯脏层腹膜表层)。
    N2a=4-6枚区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴)
    T4b, N1–N2, M0T4b=肿瘤直接侵犯或粘连于相邻器官或结构。
    N1=1-3枚区域淋巴结转移(淋巴结内癌结节≥0.2mm),或任意数目的淋巴结出现肿瘤沉积且可识别的淋巴结均为阴性。
    –N1a=1枚区域淋巴结转移。
    –N1b=2-3枚区域淋巴结转移。
    –N1c= 无区域淋巴结转移,但浆膜下、肠系膜或无腹膜覆盖的结肠旁组织,或直肠旁/直肠系膜组织出现肿瘤种植。
    N2=4枚或以上区域淋巴结转移。
    –N2a= 4-6枚区域淋巴结转移。
    –N2b=7枚或以上区域淋巴结转移。
    M0=影像检查等未见远处转移;未见远处部位或器官转移证据。(病理科医生不负责该范畴)
    分期TNM说明图示
    IVA任何T、任何N、M1aTX=原发肿瘤无法评估。
    T0=无原发肿瘤证据。
    Tis=原位癌,粘膜内癌(侵犯固有层,但未穿透黏膜肌层)。
    T1=肿瘤侵犯黏膜下层(穿透黏膜肌层,但未穿透固有肌层)。
    T2=肿瘤侵犯固有肌层。
    T3=肿瘤穿透固有肌层进入结直肠旁组织。
    T4=肿瘤直接侵犯或粘连于相邻器官或结构。
    –T4a=肿瘤穿透脏层腹膜(包括肿瘤穿透引起的肠穿孔,以及肿瘤通过炎症区域侵袭到脏层腹膜表层)
    –T4b=肿瘤直接侵犯或粘连于相邻器官或结构。
    NX=区域淋巴结无法评估。
    N0=无区域淋巴结转移。
    N1=1-3枚区域淋巴结转移(淋巴结内肿瘤≥0.2mm),或任意数目的淋巴结出现肿瘤沉积且可识别的淋巴结均为阴性。
    –N1a=1枚区域淋巴结转移。
    –N1b=2-3枚区域淋巴结转移。
    –N1c= 无区域淋巴结转移,但浆膜下、肠系膜或无腹膜覆盖的结肠旁组织,或直肠旁/直肠系膜组织出现癌结节。
    N2=4枚或以上区域淋巴结转移。
    –N2a= 4-6枚区域淋巴结转移。
    –N2b=7枚或以上区域淋巴结转移。
    M1a=单个部位或器官转移,未见腹膜转移。
    IVB任何 T、任何 N、 M1b任何T=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的T说明部分。
    任何N=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的N说明部分。
    M1b=2个或2个以上部位或器官转移,未见腹膜转移。
    IVC任何 T、任何 N、 M1c任何T=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的T说明部分。
    任何N=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的N说明部分。
    M1c=仅腹膜转移或/伴随其他部位或器官转移。
    T=原发肿瘤;N=局部淋巴结;M=远处转移。
    a 已取得AJCC授权复印:Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74。
    上标b和c的释义参见表5末尾。
    T=原发肿瘤;N=局部淋巴结;M=远处转移。
    a 已取得AJCC授权复印:Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74。
    b T4中的直接侵犯包括侵犯其他器官或穿透浆膜直接侵犯结直肠其他部位,并经内镜确诊(如通过盲肠癌侵犯乙状结肠),或腹膜后腹膜下癌,或穿透固有肌层直接侵犯其他器官和结构(如降结肠后壁肿瘤侵犯左肾或侧腹壁;或直肠中远端肿瘤侵犯前列腺、精索、宫颈和阴道)。
    c 肿瘤粘连于其他器官和结构,大体上归为cT4b。然而,如果镜下观察未见肿瘤粘连,按照肠壁侵犯深度归为pT1-4a。应将V和L分类标准用于鉴别是否伴血管和淋巴管侵犯,而PN预后影响因素应用于周围神经侵犯。
    表5. TNM IVA, IVB, IVC 阶段 的定义
    分期TNM说明图示
    IVA任何T、任何N、M1aTX=原发肿瘤无法评估。
    T0=无原发肿瘤证据。
    Tis=原位癌,粘膜内癌(侵犯固有层,但未穿透黏膜肌层)。
    T1=肿瘤侵犯黏膜下层(穿透黏膜肌层,但未穿透固有肌层)。
    T2=肿瘤侵犯固有肌层。
    T3=肿瘤穿透固有肌层进入结直肠旁组织。
    T4=肿瘤直接侵犯或粘连于相邻器官或结构。
    –T4a=肿瘤穿透脏层腹膜(包括肿瘤穿透引起的肠穿孔,以及肿瘤通过炎症区域侵袭到脏层腹膜表层)
    –T4b=肿瘤直接侵犯或粘连于相邻器官或结构。
    NX=区域淋巴结无法评估。
    N0=无区域淋巴结转移。
    N1=1-3枚区域淋巴结转移(淋巴结内肿瘤≥0.2mm),或任意数目的淋巴结出现肿瘤沉积且可识别的淋巴结均为阴性。
    –N1a=1枚区域淋巴结转移。
    –N1b=2-3枚区域淋巴结转移。
    –N1c= 无区域淋巴结转移,但浆膜下、肠系膜或无腹膜覆盖的结肠旁组织,或直肠旁/直肠系膜组织出现癌结节。
    N2=4枚或以上区域淋巴结转移。
    –N2a= 4-6枚区域淋巴结转移。
    –N2b=7枚或以上区域淋巴结转移。
    M1a=单个部位或器官转移,未见腹膜转移。
    IVB任何 T、任何 N、 M1b任何T=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的T说明部分。
    任何N=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的N说明部分。
    M1b=2个或2个以上部位或器官转移,未见腹膜转移。
    IVC任何 T、任何 N、 M1c任何T=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的T说明部分。
    任何N=见上方关于任何肿瘤、任何区域淋巴结、M1a TNM分期中的N说明部分。
    M1c=仅腹膜转移或/伴随其他部位或器官转移。
    T=原发肿瘤;N=局部淋巴结;M=远处转移。
    a 已取得AJCC授权复印:Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74。
    b T4中的直接侵犯包括侵犯其他器官或穿透浆膜直接侵犯结直肠其他部位,并经内镜确诊(如通过盲肠癌侵犯乙状结肠),或腹膜后腹膜下癌,或穿透固有肌层直接侵犯其他器官和结构(如降结肠后壁肿瘤侵犯左肾或侧腹壁;或直肠中远端肿瘤侵犯前列腺、精索、宫颈和阴道)。
    c 肿瘤粘连于其他器官和结构,大体上归为cT4b。然而,如果镜下观察未见肿瘤粘连,按照肠壁侵犯深度归为pT1-4a。应将V和L分类标准用于鉴别是否伴血管和淋巴管侵犯,而PN预后影响因素应用于周围神经侵犯。

    参考文献

  • Schmidt CR, Gollub MJ, Weiser MR: Contemporary imaging for colorectal cancer. Surg Oncol Clin N Am 16 (2): 369-88, 2007.
  • Siddiqui AA, Fayiga Y, Huerta S: The role of endoscopic ultrasound in the evaluation of rectal cancer. Int Semin Surg Oncol 3: 36, 2006.
  • Søreide K: Molecular testing for microsatellite instability and DNA mismatch repair defects in hereditary and sporadic colorectal cancers--ready for prime time? Tumour Biol 28 (5): 290-300, 2007.
  • Zammit M, Jenkins JT, Urie A, et al.: A technically difficult endorectal ultrasound is more likely to be inaccurate. Colorectal Dis 7 (5): 486-91, 2005.
  • Libutti SK, Willett CG, Saltz LB: Cancer of the rectum. In: DeVita VT Jr, Lawrence TS, Rosenberg SA: Cancer: Principles and Practice of Oncology. 9th ed. Philadelphia, Pa: Lippincott Williams & Wilkins, 2011, pp 1127-41.
  • Goldstein MJ, Mitchell EP: Carcinoembryonic antigen in the staging and follow-up of patients with colorectal cancer. Cancer Invest 23 (4): 338-51, 2005.
  • Das P, Skibber JM, Rodriguez-Bigas MA, et al.: Predictors of tumor response and downstaging in patients who receive preoperative chemoradiation for rectal cancer. Cancer 109 (9): 1750-5, 2007.
  • Lahaye MJ, Engelen SM, Nelemans PJ, et al.: Imaging for predicting the risk factors--the circumferential resection margin and nodal disease--of local recurrence in rectal cancer: a meta-analysis. Semin Ultrasound CT MR 26 (4): 259-68, 2005.
  • Balch GC, De Meo A, Guillem JG: Modern management of rectal cancer: a 2006 update. World J Gastroenterol 12 (20): 3186-95, 2006.
  • Compton CC, Greene FL: The staging of colorectal cancer: 2004 and beyond. CA Cancer J Clin 54 (6): 295-308, 2004 Nov-Dec.
  • Jessup J, Benson A, Chen V: Colon and Rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74.
  • Nelson H, Petrelli N, Carlin A, et al.: Guidelines 2000 for colon and rectal cancer surgery. J Natl Cancer Inst 93 (8): 583-96, 2001.
  • Swanson RS, Compton CC, Stewart AK, et al.: The prognosis of T3N0 colon cancer is dependent on the number of lymph nodes examined. Ann Surg Oncol 10 (1): 65-71, 2003 Jan-Feb.
  • Le Voyer TE, Sigurdson ER, Hanlon AL, et al.: Colon cancer survival is associated with increasing number of lymph nodes analyzed: a secondary survey of intergroup trial INT-0089. J Clin Oncol 21 (15): 2912-9, 2003.
  • Prandi M, Lionetto R, Bini A, et al.: Prognostic evaluation of stage B colon cancer patients is improved by an adequate lymphadenectomy: results of a secondary analysis of a large scale adjuvant trial. Ann Surg 235 (4): 458-63, 2002.
  • Tepper JE, O'Connell MJ, Niedzwiecki D, et al.: Impact of number of nodes retrieved on outcome in patients with rectal cancer. J Clin Oncol 19 (1): 157-63, 2001.
  • Greene FL, Stewart AK, Norton HJ: New tumor-node-metastasis staging strategy for node-positive (stage III) rectal cancer: an analysis. J Clin Oncol 22 (10): 1778-84, 2004.
  • Rectal Cancer Treatment (PDQ®)

    Stage Information for Rectal Cancer

    Accurate staging provides crucial information about the location and size of the primary tumor in the rectum, and, if present, the size, number, and location of any metastases. Accurate initial staging can influence therapy by helping to determine the type of surgical intervention and the choice of neoadjuvant therapy to maximize the likelihood of resection with clear margins. In primary rectal cancer, pelvic imaging helps determine the following:

  • The depth of tumor invasion.
  • The distance from the sphincter complex.
  • The potential for achieving negative circumferential (radial) margins.
  • The involvement of locoregional lymph nodes or adjacent organs.
  • Staging Evaluation

    Clinical evaluation and staging procedures may include the following:

  • Digital-rectal examination (DRE): DRE and/or rectovaginal exam and rigid proctoscopy to determine if sphincter-saving surgery is possible.
  • Colonoscopy: Complete colonoscopy to rule out cancers elsewhere in the bowel.
  • Computed tomography (CT): Pan-body CT scan to rule out metastatic disease.
  • Magnetic resonance imaging (MRI): MRI of the abdomen and pelvis to determine the depth of penetration and the potential for achieving negative circumferential (radial) margins and to identify locoregional nodal metastases and distant metastatic disease. MRI may be particularly helpful in determining sacral involvement in local recurrence.
  • Endorectal ultrasound: Endorectal ultrasound with a rigid probe or a flexible scope for stenotic lesions to determine the depth of penetration and identify locoregional nodal metastases.
  • Positron emission tomography (PET): PET to image distant metastatic disease.
  • Carcinoembryonic antigen (CEA): Measurement of the serum CEA level for prognostic assessment and the determination of response to therapy.
  • In the tumor (T) staging of rectal carcinoma, several studies indicate that the accuracy of endorectal ultrasound ranges from 80% to 95% compared with 65% to 75% for CT and 75% to 85% for MRI. The accuracy in determining metastatic nodal involvement by endorectal ultrasound is approximately 70% to 75% compared with 55% to 65% for CT and 60% to 70% for MRI.

    In a meta-analysis of 84 studies, none of the three imaging modalities, including endorectal ultrasound, CT, and MRI, were found to be significantly superior to the others in staging nodal (N) status.

    Endorectal ultrasound using a rigid probe may be similarly accurate in T and N staging when compared with endorectal ultrasound using a flexible scope; however, a technically difficult endorectal ultrasound may give an inconclusive or inaccurate result for both T stage and N stage. In this case, further assessment by MRI or flexible endorectal ultrasound may be considered.

    In patients with rectal cancer, the circumferential resection margin is an important pathological staging parameter. Measured in millimeters, it is defined as the retroperitoneal or peritoneal adventitial soft-tissue margin closest to the deepest penetration of tumor.

    AJCC Stage Groupings and TNM Definitions

    The AJCC has designated staging by TNM (tumor, node, metastasis) classification to define rectal cancer.

    The same classification is used for both clinical and pathologic staging.

    Treatment decisions are made with reference to the TNM classification system, rather than the older Dukes or Modified Astler-Coller classification schema.

    Cancers staged using this staging system include adenocarcinomas, high-grade neuroendocrine carcinomas, and squamous carcinomas of the colon and rectum. Cancers not staged using this staging system include these histopathologic types of cancer: appendiceal carcinomas, anal carcinomas, well-differentiated neuroendocrine tumors (carcinoids).

    (Refer to the PDQ summaries on Anal Cancer Treatment and the Gastrointestinal Carcinoid Tumors Treatment for more information.)

    Lymph node status

    The AJCC and a National Cancer Institute-sponsored panel suggested that at least 10 to 14 lymph nodes be examined in radical colon and rectum resections in patients who did not receive neoadjuvant therapy. In cases in which a tumor is resected for palliation or in patients who have received preoperative radiation therapy, fewer lymph nodes may be present.

    This takes into consideration that the number of lymph nodes examined is a reflection of both the aggressiveness of lymphovascular mesenteric dissection at the time of surgical resection and the pathologic identification of nodes in the specimen.

    Retrospective studies, such as Intergroup trial INT-0089 (EST-2288), have demonstrated that the number of lymph nodes examined during colon and rectal surgery may be associated with patient outcome.

    A new tumor-metastasis staging strategy for node-positive rectal cancer has been proposed.

    Table 1. Definitions of TNM Stage 0Table 2. Definitions of TNM Stage ITable 3. Definitions of TNM Stages IIA, IIB, and IICTable 4. Definitions of TNM Stages IIIA, IIIB, and IIICTable 5. Definitions of TNM Stages IVA, IVB, and IVC
    StageTNMDescription Illustration
    StageTNMDescriptionIllustration
    StageTNMDescriptionIllustration
    StageTNMDescription Illustration
    StageTNMDefinitionIllustration
    0Tis, N0, M0Tis = Carcinoma in situ, intramucosal carcinoma (involvement of lamina propria with no extension through muscularis mucosae).
    N0 = No regional lymph node metastasis.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    StageTNMDescriptionIllustration
    IT1–T2, N0, M0T1 = Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria).
    T2 = Tumor invades the muscularis propria.
    N0 = No regional lymph node metastasis.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    StageTNMDescriptionIllustration
    IIAT3, N0, M0T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    N0 = No regional lymph node metastasis.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    IIBT4a, N0, M0T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    N0 = No regional lymph node metastasis.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    IICT4b, N0, M0T4b = Tumor directly invades or adheres to adjacent organs or structures.
    N0 = No regional lymph node metastasis.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    StageTNMDescription Illustration
    IIIAT1, N2a, M0T1 = Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria).
    N2a = Four to six regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T1–2, N1/N1c, M0T1 = Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria).
    T2 = Tumor invades the muscularis propria.
    N1 = One to three regional lymph nodes are positive (tumor in lymph nodes measuring ≥0.2 mm), or any number of tumor deposits are present and all identifiable lymph nodes are negative.
    –N1c = No regional lymph nodes are positive, but there are tumor deposits in the subserosa, mesentery, or nonperitonealized pericolic, or perirectal/mesorectal tissues.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    IIIBT1–T2, N2b, M0T1 = Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria).
    T2 = Tumor invades the muscularis propria.
    N2b = Seven or more regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T2–T3, N2a, M0T2 = Tumor invades the muscularis propria.
    T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    N2a = Four to six regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T3–T4a, N1/N1c, M0T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    T4 = Tumor invades the visceral peritoneum or invades or adheres to adjacent organ or structure.
    –T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    N1 = One to three regional lymph nodes are positive (tumor in lymph nodes measuring ≥0.2 mm), or any number of tumor deposits are present and all identifiable lymph nodes are negative.
    –N1c = No regional lymph nodes are positive, but there are tumor deposits in the subserosa, mesentery, or nonperitonealized pericolic, or perirectal/mesorectal tissues.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    IIICT3–T4a, N2b, M0T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    T4 = Tumor invades the visceral peritoneum or invades or adheres to adjacent organ or structure.
    –T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    N2b = Seven or more regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T4a, N2a, M0T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    N2a = Four to six regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T4b, N1–N2, M0T4b = Tumor directly invades or adheres to adjacent organs or structures.
    N1 = One to three regional lymph nodes are positive (tumor in lymph nodes measuring ≥0.2 mm), or any number of tumor deposits are present and all identifiable lymph nodes are negative.
    –N1a = One regional lymph node is positive.
    –N1b = Two or three regional lymph nodes are positive.
    –N1c = No regional lymph nodes are positive, but there are tumor deposits in the subserosa, mesentery, or nonperitonealized pericolic, or perirectal/mesorectal tissues.
    N2 = Four or more regional nodes are positive.
    –N2a = Four to six regional lymph nodes are positive.
    –N2b = Seven or more regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    StageTNMDefinitionIllustration
    IVAAny T, Any N, M1aTX = Primary tumor cannot be assessed.
    T0 = No evidence of primary tumor.
    Tis = Carcinoma in situ, intramucosal carcinoma (involvement of lamina propria with no extension through muscularis mucosae).
    T1 = Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria).
    T2 = Tumor invades the muscularis propria.
    T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    T4 = Tumor invades the visceral peritoneum or invades or adheres to adjacent organ or structure.
    –T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    –T4b = Tumor directly invades or adheres to adjacent organs or structures.
    NX = Regional lymph nodes cannot be assessed.
    N0 = No regional lymph node metastasis.
    N1 = One to three regional lymph nodes are positive (tumor in lymph nodes measuring ≥0.2 mm), or any number of tumor deposits are present and all identifiable lymph nodes are negative.
    –N1a = One regional lymph node is positive.
    –N1b = Two or three regional lymph nodes are positive.
    –N1c = No regional lymph nodes are positive, but there are tumor deposits in the subserosa, mesentery, or nonperitonealized pericolic, or perirectal/mesorectal tissues.
    N2 = Four or more regional nodes are positive.
    –N2a = Four to six regional lymph nodes are positive.
    –N2b = Seven or more regional lymph nodes are positive.
    M1a = Metastasis to one site or organ is identified without peritoneal metastasis.
    IVBAny T, Any N, M1bAny T = See T descriptions above in Any T, Any N, M1a TNM stage group.
    Any N = See N descriptions above in Any T, Any N1, M1a TNM stage group.
    M1b = Metastasis to two or more sites or organs is identified without peritoneal metastasis.
    IVCAny T, Any N, M1cAny T = See T descriptions above in Any T, Any N, M1a TNM stage group.
    Any N = See N descriptions above in Any T, Any N1, M1a TNM stage group.
    M1c = Metastasis to the peritoneal surface is identified alone or with other site or organ metastases.
    T = primary tumor; N = regional lymph nodes; M = distant metastasis.
    aReprinted with permission from AJCC: Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74.
    The explanations for superscripts b and c are at the end of Table 5.
    T = primary tumor; N = regional lymph nodes; M = distant metastasis.
    aReprinted with permission from AJCC: Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74.
    The explanations for superscripts b and c are at the end of Table 5.
    T = primary tumor; N = regional lymph nodes; M = distant metastasis.
    aReprinted with permission from AJCC: Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74.
    The explanations for superscripts b and c are at the end of Table 5.
    T = primary tumor; N = regional lymph nodes; M = distant metastasis.
    aReprinted with permission from AJCC: Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74.
    The explanations for superscripts b and c are at the end of Table 5.
    T = primary tumor; N = regional lymph nodes; M = distant metastasis.
    aReprinted with permission from AJCC: Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74.
    b Direct invasion in T4 includes invasion of other organs or other segments of the colorectum as a result of direct extension through the serosa, as confirmed on microscopic examination (e.g., invasion of the sigmoid colon by a carcinoma of the cecum) or, for cancers in a retroperitoneal or subperitoneal location, direct invasion of other organs or structures by virtue of extension beyond the muscularis propria (i.e., respectively, a tumor on the posterior wall of the descending colon invading the left kidney or lateral abdominal wall; or a mid or distal rectal cancer with invasion of prostate, seminal vesicles, cervix, or vagina).
    cTumor that is adherent to other organs or structures, grossly, is classified cT4b. However, if no tumor is present in the adhesion, microscopically, the classification should be pT1-4a depending on the anatomical depth of wall invasion. The V and L classification should be used to identify the presence or absence of vascular or lymphatic invasion whereas the PN prognostic factor should be used for perineural invasion.
    Table 2. Definitions of TNM Stage ITable 3. Definitions of TNM Stages IIA, IIB, and IICTable 4. Definitions of TNM Stages IIIA, IIIB, and IIICTable 5. Definitions of TNM Stages IVA, IVB, and IVC
    StageTNMDescriptionIllustration
    StageTNMDescriptionIllustration
    StageTNMDescription Illustration
    StageTNMDefinitionIllustration
    IT1–T2, N0, M0T1 = Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria).
    T2 = Tumor invades the muscularis propria.
    N0 = No regional lymph node metastasis.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    StageTNMDescriptionIllustration
    IIAT3, N0, M0T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    N0 = No regional lymph node metastasis.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    IIBT4a, N0, M0T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    N0 = No regional lymph node metastasis.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    IICT4b, N0, M0T4b = Tumor directly invades or adheres to adjacent organs or structures.
    N0 = No regional lymph node metastasis.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    StageTNMDescription Illustration
    IIIAT1, N2a, M0T1 = Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria).
    N2a = Four to six regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T1–2, N1/N1c, M0T1 = Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria).
    T2 = Tumor invades the muscularis propria.
    N1 = One to three regional lymph nodes are positive (tumor in lymph nodes measuring ≥0.2 mm), or any number of tumor deposits are present and all identifiable lymph nodes are negative.
    –N1c = No regional lymph nodes are positive, but there are tumor deposits in the subserosa, mesentery, or nonperitonealized pericolic, or perirectal/mesorectal tissues.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    IIIBT1–T2, N2b, M0T1 = Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria).
    T2 = Tumor invades the muscularis propria.
    N2b = Seven or more regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T2–T3, N2a, M0T2 = Tumor invades the muscularis propria.
    T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    N2a = Four to six regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T3–T4a, N1/N1c, M0T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    T4 = Tumor invades the visceral peritoneum or invades or adheres to adjacent organ or structure.
    –T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    N1 = One to three regional lymph nodes are positive (tumor in lymph nodes measuring ≥0.2 mm), or any number of tumor deposits are present and all identifiable lymph nodes are negative.
    –N1c = No regional lymph nodes are positive, but there are tumor deposits in the subserosa, mesentery, or nonperitonealized pericolic, or perirectal/mesorectal tissues.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    IIICT3–T4a, N2b, M0T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    T4 = Tumor invades the visceral peritoneum or invades or adheres to adjacent organ or structure.
    –T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    N2b = Seven or more regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T4a, N2a, M0T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    N2a = Four to six regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T4b, N1–N2, M0T4b = Tumor directly invades or adheres to adjacent organs or structures.
    N1 = One to three regional lymph nodes are positive (tumor in lymph nodes measuring ≥0.2 mm), or any number of tumor deposits are present and all identifiable lymph nodes are negative.
    –N1a = One regional lymph node is positive.
    –N1b = Two or three regional lymph nodes are positive.
    –N1c = No regional lymph nodes are positive, but there are tumor deposits in the subserosa, mesentery, or nonperitonealized pericolic, or perirectal/mesorectal tissues.
    N2 = Four or more regional nodes are positive.
    –N2a = Four to six regional lymph nodes are positive.
    –N2b = Seven or more regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    StageTNMDefinitionIllustration
    IVAAny T, Any N, M1aTX = Primary tumor cannot be assessed.
    T0 = No evidence of primary tumor.
    Tis = Carcinoma in situ, intramucosal carcinoma (involvement of lamina propria with no extension through muscularis mucosae).
    T1 = Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria).
    T2 = Tumor invades the muscularis propria.
    T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    T4 = Tumor invades the visceral peritoneum or invades or adheres to adjacent organ or structure.
    –T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    –T4b = Tumor directly invades or adheres to adjacent organs or structures.
    NX = Regional lymph nodes cannot be assessed.
    N0 = No regional lymph node metastasis.
    N1 = One to three regional lymph nodes are positive (tumor in lymph nodes measuring ≥0.2 mm), or any number of tumor deposits are present and all identifiable lymph nodes are negative.
    –N1a = One regional lymph node is positive.
    –N1b = Two or three regional lymph nodes are positive.
    –N1c = No regional lymph nodes are positive, but there are tumor deposits in the subserosa, mesentery, or nonperitonealized pericolic, or perirectal/mesorectal tissues.
    N2 = Four or more regional nodes are positive.
    –N2a = Four to six regional lymph nodes are positive.
    –N2b = Seven or more regional lymph nodes are positive.
    M1a = Metastasis to one site or organ is identified without peritoneal metastasis.
    IVBAny T, Any N, M1bAny T = See T descriptions above in Any T, Any N, M1a TNM stage group.
    Any N = See N descriptions above in Any T, Any N1, M1a TNM stage group.
    M1b = Metastasis to two or more sites or organs is identified without peritoneal metastasis.
    IVCAny T, Any N, M1cAny T = See T descriptions above in Any T, Any N, M1a TNM stage group.
    Any N = See N descriptions above in Any T, Any N1, M1a TNM stage group.
    M1c = Metastasis to the peritoneal surface is identified alone or with other site or organ metastases.
    T = primary tumor; N = regional lymph nodes; M = distant metastasis.
    aReprinted with permission from AJCC: Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74.
    The explanations for superscripts b and c are at the end of Table 5.
    T = primary tumor; N = regional lymph nodes; M = distant metastasis.
    aReprinted with permission from AJCC: Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74.
    The explanations for superscripts b and c are at the end of Table 5.
    T = primary tumor; N = regional lymph nodes; M = distant metastasis.
    aReprinted with permission from AJCC: Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74.
    The explanations for superscripts b and c are at the end of Table 5.
    T = primary tumor; N = regional lymph nodes; M = distant metastasis.
    aReprinted with permission from AJCC: Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74.
    b Direct invasion in T4 includes invasion of other organs or other segments of the colorectum as a result of direct extension through the serosa, as confirmed on microscopic examination (e.g., invasion of the sigmoid colon by a carcinoma of the cecum) or, for cancers in a retroperitoneal or subperitoneal location, direct invasion of other organs or structures by virtue of extension beyond the muscularis propria (i.e., respectively, a tumor on the posterior wall of the descending colon invading the left kidney or lateral abdominal wall; or a mid or distal rectal cancer with invasion of prostate, seminal vesicles, cervix, or vagina).
    cTumor that is adherent to other organs or structures, grossly, is classified cT4b. However, if no tumor is present in the adhesion, microscopically, the classification should be pT1-4a depending on the anatomical depth of wall invasion. The V and L classification should be used to identify the presence or absence of vascular or lymphatic invasion whereas the PN prognostic factor should be used for perineural invasion.
    Table 3. Definitions of TNM Stages IIA, IIB, and IICTable 4. Definitions of TNM Stages IIIA, IIIB, and IIICTable 5. Definitions of TNM Stages IVA, IVB, and IVC
    StageTNMDescriptionIllustration
    StageTNMDescription Illustration
    StageTNMDefinitionIllustration
    IIAT3, N0, M0T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    N0 = No regional lymph node metastasis.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    IIBT4a, N0, M0T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    N0 = No regional lymph node metastasis.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    IICT4b, N0, M0T4b = Tumor directly invades or adheres to adjacent organs or structures.
    N0 = No regional lymph node metastasis.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    StageTNMDescription Illustration
    IIIAT1, N2a, M0T1 = Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria).
    N2a = Four to six regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T1–2, N1/N1c, M0T1 = Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria).
    T2 = Tumor invades the muscularis propria.
    N1 = One to three regional lymph nodes are positive (tumor in lymph nodes measuring ≥0.2 mm), or any number of tumor deposits are present and all identifiable lymph nodes are negative.
    –N1c = No regional lymph nodes are positive, but there are tumor deposits in the subserosa, mesentery, or nonperitonealized pericolic, or perirectal/mesorectal tissues.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    IIIBT1–T2, N2b, M0T1 = Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria).
    T2 = Tumor invades the muscularis propria.
    N2b = Seven or more regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T2–T3, N2a, M0T2 = Tumor invades the muscularis propria.
    T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    N2a = Four to six regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T3–T4a, N1/N1c, M0T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    T4 = Tumor invades the visceral peritoneum or invades or adheres to adjacent organ or structure.
    –T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    N1 = One to three regional lymph nodes are positive (tumor in lymph nodes measuring ≥0.2 mm), or any number of tumor deposits are present and all identifiable lymph nodes are negative.
    –N1c = No regional lymph nodes are positive, but there are tumor deposits in the subserosa, mesentery, or nonperitonealized pericolic, or perirectal/mesorectal tissues.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    IIICT3–T4a, N2b, M0T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    T4 = Tumor invades the visceral peritoneum or invades or adheres to adjacent organ or structure.
    –T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    N2b = Seven or more regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T4a, N2a, M0T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    N2a = Four to six regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T4b, N1–N2, M0T4b = Tumor directly invades or adheres to adjacent organs or structures.
    N1 = One to three regional lymph nodes are positive (tumor in lymph nodes measuring ≥0.2 mm), or any number of tumor deposits are present and all identifiable lymph nodes are negative.
    –N1a = One regional lymph node is positive.
    –N1b = Two or three regional lymph nodes are positive.
    –N1c = No regional lymph nodes are positive, but there are tumor deposits in the subserosa, mesentery, or nonperitonealized pericolic, or perirectal/mesorectal tissues.
    N2 = Four or more regional nodes are positive.
    –N2a = Four to six regional lymph nodes are positive.
    –N2b = Seven or more regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    StageTNMDefinitionIllustration
    IVAAny T, Any N, M1aTX = Primary tumor cannot be assessed.
    T0 = No evidence of primary tumor.
    Tis = Carcinoma in situ, intramucosal carcinoma (involvement of lamina propria with no extension through muscularis mucosae).
    T1 = Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria).
    T2 = Tumor invades the muscularis propria.
    T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    T4 = Tumor invades the visceral peritoneum or invades or adheres to adjacent organ or structure.
    –T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    –T4b = Tumor directly invades or adheres to adjacent organs or structures.
    NX = Regional lymph nodes cannot be assessed.
    N0 = No regional lymph node metastasis.
    N1 = One to three regional lymph nodes are positive (tumor in lymph nodes measuring ≥0.2 mm), or any number of tumor deposits are present and all identifiable lymph nodes are negative.
    –N1a = One regional lymph node is positive.
    –N1b = Two or three regional lymph nodes are positive.
    –N1c = No regional lymph nodes are positive, but there are tumor deposits in the subserosa, mesentery, or nonperitonealized pericolic, or perirectal/mesorectal tissues.
    N2 = Four or more regional nodes are positive.
    –N2a = Four to six regional lymph nodes are positive.
    –N2b = Seven or more regional lymph nodes are positive.
    M1a = Metastasis to one site or organ is identified without peritoneal metastasis.
    IVBAny T, Any N, M1bAny T = See T descriptions above in Any T, Any N, M1a TNM stage group.
    Any N = See N descriptions above in Any T, Any N1, M1a TNM stage group.
    M1b = Metastasis to two or more sites or organs is identified without peritoneal metastasis.
    IVCAny T, Any N, M1cAny T = See T descriptions above in Any T, Any N, M1a TNM stage group.
    Any N = See N descriptions above in Any T, Any N1, M1a TNM stage group.
    M1c = Metastasis to the peritoneal surface is identified alone or with other site or organ metastases.
    T = primary tumor; N = regional lymph nodes; M = distant metastasis.
    aReprinted with permission from AJCC: Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74.
    The explanations for superscripts b and c are at the end of Table 5.
    T = primary tumor; N = regional lymph nodes; M = distant metastasis.
    aReprinted with permission from AJCC: Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74.
    The explanations for superscripts b and c are at the end of Table 5.
    T = primary tumor; N = regional lymph nodes; M = distant metastasis.
    aReprinted with permission from AJCC: Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74.
    b Direct invasion in T4 includes invasion of other organs or other segments of the colorectum as a result of direct extension through the serosa, as confirmed on microscopic examination (e.g., invasion of the sigmoid colon by a carcinoma of the cecum) or, for cancers in a retroperitoneal or subperitoneal location, direct invasion of other organs or structures by virtue of extension beyond the muscularis propria (i.e., respectively, a tumor on the posterior wall of the descending colon invading the left kidney or lateral abdominal wall; or a mid or distal rectal cancer with invasion of prostate, seminal vesicles, cervix, or vagina).
    cTumor that is adherent to other organs or structures, grossly, is classified cT4b. However, if no tumor is present in the adhesion, microscopically, the classification should be pT1-4a depending on the anatomical depth of wall invasion. The V and L classification should be used to identify the presence or absence of vascular or lymphatic invasion whereas the PN prognostic factor should be used for perineural invasion.
    Table 4. Definitions of TNM Stages IIIA, IIIB, and IIICTable 5. Definitions of TNM Stages IVA, IVB, and IVC
    StageTNMDescription Illustration
    StageTNMDefinitionIllustration
    IIIAT1, N2a, M0T1 = Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria).
    N2a = Four to six regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T1–2, N1/N1c, M0T1 = Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria).
    T2 = Tumor invades the muscularis propria.
    N1 = One to three regional lymph nodes are positive (tumor in lymph nodes measuring ≥0.2 mm), or any number of tumor deposits are present and all identifiable lymph nodes are negative.
    –N1c = No regional lymph nodes are positive, but there are tumor deposits in the subserosa, mesentery, or nonperitonealized pericolic, or perirectal/mesorectal tissues.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    IIIBT1–T2, N2b, M0T1 = Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria).
    T2 = Tumor invades the muscularis propria.
    N2b = Seven or more regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T2–T3, N2a, M0T2 = Tumor invades the muscularis propria.
    T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    N2a = Four to six regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T3–T4a, N1/N1c, M0T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    T4 = Tumor invades the visceral peritoneum or invades or adheres to adjacent organ or structure.
    –T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    N1 = One to three regional lymph nodes are positive (tumor in lymph nodes measuring ≥0.2 mm), or any number of tumor deposits are present and all identifiable lymph nodes are negative.
    –N1c = No regional lymph nodes are positive, but there are tumor deposits in the subserosa, mesentery, or nonperitonealized pericolic, or perirectal/mesorectal tissues.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    IIICT3–T4a, N2b, M0T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    T4 = Tumor invades the visceral peritoneum or invades or adheres to adjacent organ or structure.
    –T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    N2b = Seven or more regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T4a, N2a, M0T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    N2a = Four to six regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    T4b, N1–N2, M0T4b = Tumor directly invades or adheres to adjacent organs or structures.
    N1 = One to three regional lymph nodes are positive (tumor in lymph nodes measuring ≥0.2 mm), or any number of tumor deposits are present and all identifiable lymph nodes are negative.
    –N1a = One regional lymph node is positive.
    –N1b = Two or three regional lymph nodes are positive.
    –N1c = No regional lymph nodes are positive, but there are tumor deposits in the subserosa, mesentery, or nonperitonealized pericolic, or perirectal/mesorectal tissues.
    N2 = Four or more regional nodes are positive.
    –N2a = Four to six regional lymph nodes are positive.
    –N2b = Seven or more regional lymph nodes are positive.
    M0 = No distant metastasis by imaging, etc.; no evidence of tumor in distant sites or organs. (This category is not assigned by pathologists.)
    StageTNMDefinitionIllustration
    IVAAny T, Any N, M1aTX = Primary tumor cannot be assessed.
    T0 = No evidence of primary tumor.
    Tis = Carcinoma in situ, intramucosal carcinoma (involvement of lamina propria with no extension through muscularis mucosae).
    T1 = Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria).
    T2 = Tumor invades the muscularis propria.
    T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    T4 = Tumor invades the visceral peritoneum or invades or adheres to adjacent organ or structure.
    –T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    –T4b = Tumor directly invades or adheres to adjacent organs or structures.
    NX = Regional lymph nodes cannot be assessed.
    N0 = No regional lymph node metastasis.
    N1 = One to three regional lymph nodes are positive (tumor in lymph nodes measuring ≥0.2 mm), or any number of tumor deposits are present and all identifiable lymph nodes are negative.
    –N1a = One regional lymph node is positive.
    –N1b = Two or three regional lymph nodes are positive.
    –N1c = No regional lymph nodes are positive, but there are tumor deposits in the subserosa, mesentery, or nonperitonealized pericolic, or perirectal/mesorectal tissues.
    N2 = Four or more regional nodes are positive.
    –N2a = Four to six regional lymph nodes are positive.
    –N2b = Seven or more regional lymph nodes are positive.
    M1a = Metastasis to one site or organ is identified without peritoneal metastasis.
    IVBAny T, Any N, M1bAny T = See T descriptions above in Any T, Any N, M1a TNM stage group.
    Any N = See N descriptions above in Any T, Any N1, M1a TNM stage group.
    M1b = Metastasis to two or more sites or organs is identified without peritoneal metastasis.
    IVCAny T, Any N, M1cAny T = See T descriptions above in Any T, Any N, M1a TNM stage group.
    Any N = See N descriptions above in Any T, Any N1, M1a TNM stage group.
    M1c = Metastasis to the peritoneal surface is identified alone or with other site or organ metastases.
    T = primary tumor; N = regional lymph nodes; M = distant metastasis.
    aReprinted with permission from AJCC: Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74.
    The explanations for superscripts b and c are at the end of Table 5.
    T = primary tumor; N = regional lymph nodes; M = distant metastasis.
    aReprinted with permission from AJCC: Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74.
    b Direct invasion in T4 includes invasion of other organs or other segments of the colorectum as a result of direct extension through the serosa, as confirmed on microscopic examination (e.g., invasion of the sigmoid colon by a carcinoma of the cecum) or, for cancers in a retroperitoneal or subperitoneal location, direct invasion of other organs or structures by virtue of extension beyond the muscularis propria (i.e., respectively, a tumor on the posterior wall of the descending colon invading the left kidney or lateral abdominal wall; or a mid or distal rectal cancer with invasion of prostate, seminal vesicles, cervix, or vagina).
    cTumor that is adherent to other organs or structures, grossly, is classified cT4b. However, if no tumor is present in the adhesion, microscopically, the classification should be pT1-4a depending on the anatomical depth of wall invasion. The V and L classification should be used to identify the presence or absence of vascular or lymphatic invasion whereas the PN prognostic factor should be used for perineural invasion.
    Table 5. Definitions of TNM Stages IVA, IVB, and IVC
    StageTNMDefinitionIllustration
    IVAAny T, Any N, M1aTX = Primary tumor cannot be assessed.
    T0 = No evidence of primary tumor.
    Tis = Carcinoma in situ, intramucosal carcinoma (involvement of lamina propria with no extension through muscularis mucosae).
    T1 = Tumor invades the submucosa (through the muscularis mucosa but not into the muscularis propria).
    T2 = Tumor invades the muscularis propria.
    T3 = Tumor invades through the muscularis propria into pericolorectal tissues.
    T4 = Tumor invades the visceral peritoneum or invades or adheres to adjacent organ or structure.
    –T4a = Tumor invades through the visceral peritoneum (including gross perforation of the bowel through tumor and continuous invasion of tumor through areas of inflammation to the surface of the visceral peritoneum).
    –T4b = Tumor directly invades or adheres to adjacent organs or structures.
    NX = Regional lymph nodes cannot be assessed.
    N0 = No regional lymph node metastasis.
    N1 = One to three regional lymph nodes are positive (tumor in lymph nodes measuring ≥0.2 mm), or any number of tumor deposits are present and all identifiable lymph nodes are negative.
    –N1a = One regional lymph node is positive.
    –N1b = Two or three regional lymph nodes are positive.
    –N1c = No regional lymph nodes are positive, but there are tumor deposits in the subserosa, mesentery, or nonperitonealized pericolic, or perirectal/mesorectal tissues.
    N2 = Four or more regional nodes are positive.
    –N2a = Four to six regional lymph nodes are positive.
    –N2b = Seven or more regional lymph nodes are positive.
    M1a = Metastasis to one site or organ is identified without peritoneal metastasis.
    IVBAny T, Any N, M1bAny T = See T descriptions above in Any T, Any N, M1a TNM stage group.
    Any N = See N descriptions above in Any T, Any N1, M1a TNM stage group.
    M1b = Metastasis to two or more sites or organs is identified without peritoneal metastasis.
    IVCAny T, Any N, M1cAny T = See T descriptions above in Any T, Any N, M1a TNM stage group.
    Any N = See N descriptions above in Any T, Any N1, M1a TNM stage group.
    M1c = Metastasis to the peritoneal surface is identified alone or with other site or organ metastases.
    T = primary tumor; N = regional lymph nodes; M = distant metastasis.
    aReprinted with permission from AJCC: Colon and rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74.
    b Direct invasion in T4 includes invasion of other organs or other segments of the colorectum as a result of direct extension through the serosa, as confirmed on microscopic examination (e.g., invasion of the sigmoid colon by a carcinoma of the cecum) or, for cancers in a retroperitoneal or subperitoneal location, direct invasion of other organs or structures by virtue of extension beyond the muscularis propria (i.e., respectively, a tumor on the posterior wall of the descending colon invading the left kidney or lateral abdominal wall; or a mid or distal rectal cancer with invasion of prostate, seminal vesicles, cervix, or vagina).
    cTumor that is adherent to other organs or structures, grossly, is classified cT4b. However, if no tumor is present in the adhesion, microscopically, the classification should be pT1-4a depending on the anatomical depth of wall invasion. The V and L classification should be used to identify the presence or absence of vascular or lymphatic invasion whereas the PN prognostic factor should be used for perineural invasion.

    ReferenceSection

  • Schmidt CR, Gollub MJ, Weiser MR: Contemporary imaging for colorectal cancer. Surg Oncol Clin N Am 16 (2): 369-88, 2007.
  • Siddiqui AA, Fayiga Y, Huerta S: The role of endoscopic ultrasound in the evaluation of rectal cancer. Int Semin Surg Oncol 3: 36, 2006.
  • Søreide K: Molecular testing for microsatellite instability and DNA mismatch repair defects in hereditary and sporadic colorectal cancers--ready for prime time? Tumour Biol 28 (5): 290-300, 2007.
  • Zammit M, Jenkins JT, Urie A, et al.: A technically difficult endorectal ultrasound is more likely to be inaccurate. Colorectal Dis 7 (5): 486-91, 2005.
  • Libutti SK, Willett CG, Saltz LB: Cancer of the rectum. In: DeVita VT Jr, Lawrence TS, Rosenberg SA: Cancer: Principles and Practice of Oncology. 9th ed. Philadelphia, Pa: Lippincott Williams & Wilkins, 2011, pp 1127-41.
  • Goldstein MJ, Mitchell EP: Carcinoembryonic antigen in the staging and follow-up of patients with colorectal cancer. Cancer Invest 23 (4): 338-51, 2005.
  • Das P, Skibber JM, Rodriguez-Bigas MA, et al.: Predictors of tumor response and downstaging in patients who receive preoperative chemoradiation for rectal cancer. Cancer 109 (9): 1750-5, 2007.
  • Lahaye MJ, Engelen SM, Nelemans PJ, et al.: Imaging for predicting the risk factors--the circumferential resection margin and nodal disease--of local recurrence in rectal cancer: a meta-analysis. Semin Ultrasound CT MR 26 (4): 259-68, 2005.
  • Balch GC, De Meo A, Guillem JG: Modern management of rectal cancer: a 2006 update. World J Gastroenterol 12 (20): 3186-95, 2006.
  • Compton CC, Greene FL: The staging of colorectal cancer: 2004 and beyond. CA Cancer J Clin 54 (6): 295-308, 2004 Nov-Dec.
  • Jessup J, Benson A, Chen V: Colon and Rectum. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 251–74.
  • Nelson H, Petrelli N, Carlin A, et al.: Guidelines 2000 for colon and rectal cancer surgery. J Natl Cancer Inst 93 (8): 583-96, 2001.
  • Swanson RS, Compton CC, Stewart AK, et al.: The prognosis of T3N0 colon cancer is dependent on the number of lymph nodes examined. Ann Surg Oncol 10 (1): 65-71, 2003 Jan-Feb.
  • Le Voyer TE, Sigurdson ER, Hanlon AL, et al.: Colon cancer survival is associated with increasing number of lymph nodes analyzed: a secondary survey of intergroup trial INT-0089. J Clin Oncol 21 (15): 2912-9, 2003.
  • Prandi M, Lionetto R, Bini A, et al.: Prognostic evaluation of stage B colon cancer patients is improved by an adequate lymphadenectomy: results of a secondary analysis of a large scale adjuvant trial. Ann Surg 235 (4): 458-63, 2002.
  • Tepper JE, O'Connell MJ, Niedzwiecki D, et al.: Impact of number of nodes retrieved on outcome in patients with rectal cancer. J Clin Oncol 19 (1): 157-63, 2001.
  • Greene FL, Stewart AK, Norton HJ: New tumor-node-metastasis staging strategy for node-positive (stage III) rectal cancer: an analysis. J Clin Oncol 22 (10): 1778-84, 2004.
  • 直肠癌治疗(PDQ®)

    直肠癌的治疗方法

    因为直肠癌局部复发的风险较高,因此,直肠癌的治疗方法与结肠癌有所不同。直肠癌的总体预后较差。两者治疗上,在手术、放疗、化疗给药方式方面具有差异。除了明确直肠癌手术的目的(即治疗性或姑息性)外,还应考虑恢复或维持肛门括约肌、泌尿生殖系统的生理功能及性功能等相关的治疗问题。

    直肠癌的临床治疗需要多学科治疗模式,涉及多学科专家团队,包括胃肠病学、临床肿瘤学、肿瘤外科学、放射肿瘤学和影像学等科室。

    表6. 临床0–III期直肠癌的标准治疗方法表7. 临床IV期和复发性直肠癌的治疗方法原发病灶切除术
    标准治疗方法
    治疗方法
    临床0期直肠癌
    临床I 期直肠癌
    临床II和III期直肠癌
    治疗方法
    临床IV期和复发性直肠癌
    二线化疗
    肝转移
    肝切除后肝内动脉灌注化疗
    表7. 临床IV期和复发性直肠癌的治疗方法原发病灶切除术
    治疗方法
    临床IV期和复发性直肠癌
    二线化疗
    肝转移
    肝切除后肝内动脉灌注化疗

    原发病灶切除术

    直肠癌的主要治疗方法是切除原发肿瘤病灶。手术可根据以下情况而有所调整:

  • 肿瘤部位。
  • 肿瘤分期。
  • 是否存在高危因素(如阳性切缘、淋巴血管侵犯、周围神经侵犯、组织学低分化)。
  • 手术类型包括:

  • T1肿瘤息肉切除术
  • 临床分期的T1/T2 N0直肠癌行经肛门肿瘤切除术和经肛门内镜下显微手术。
  • 采用保留自主神经功能的全直肠系膜切除术及低位前切除。
  • 经腹会阴联合全直肠系膜切除术主要用于无法保肛的患者,伴永久性末端结肠造口。
  • 单纯息肉切除术可用于部分(T1)病例,如息肉伴侵袭性癌,可完整切除,手术切缘阴性,组织学特征良好。

    针对T1期肿瘤的局部切除术已被临床用于一部分符合适应症的患者。对于其他所有肿瘤,直肠系膜切除术是首选的治疗方法。只有非常少的T2期肿瘤患者才能行局部切除术。直肠切除联合全直肠系膜切除术(低位/中位肿瘤的全直肠系膜切除术和高位肿瘤的直肠系膜切除术,切缘距离肿瘤下方>5cm)的术后复发率为4%-8%。

    针对中上段直肠晚期癌症患者,应选择低位前切术并行结直肠吻合。针对局部晚期直肠癌,应行根治性切除术,而经低位前切除的全直肠系膜切除术联合自主神经保留术优于经腹会阴联合切除术。

    因为直肠系膜切除术后的局部肿瘤复发率低,一些研究者对术后的常规辅助放疗提出了质疑。由于直肠癌首次复发只是在局部位置,围手术期放疗对直肠癌的作用大于结肠癌。

    放化疗

    术前放化疗

    直肠癌的新辅助治疗指术前放化疗,是临床II期和III期患者的首选治疗方案。然而,针对II期或III期直肠癌患者,术后放化疗也是一种治疗手段。

    [循证依据等级:1iiA]

    基于以下多项研究结果,术前放化疗已成为T3-T4或淋巴结阳性(临床II和III期)患者的标准治疗方法:

  • 德国直肠癌研究组临床试验
  • 国家外科辅助乳腺和肠道项目R-03临床试验 (NSABP R-03)
  • [循证依据等级:1iiA] (更多信息,请参考“临床II和III期直肠癌”部分相关内容。)
  • 多项II和III期临床试验对术前放化疗的临床意义进行研究,包括:

  • 肿瘤退缩和肿瘤降期。
  • 提高肿瘤可切除性。
  • 局部疾病控制率更高。
  • 放化疗的毒性得到改善。
  • 保肛率高。
  • 术前放化疗的病理完全缓解率为10%-25%。

    然而,与单纯手术相比,术前放疗可升高并发症的发生率;一些局部复发风险较低的癌症患者,采用手术和辅助化疗可能就已经足够。

    (有关这些研究的更多信息,请参考本摘要“临床II和III期直肠癌”部分中的术前放化疗部分相关内容。)

    术后放化疗

    术前放化疗是目前临床II和III期直肠癌的治疗标准。然而,在1990年以前,已有研究观察到术后多学科治疗可改善无疾病生存期(DFS)和总体生存期(OS),研究包括:

  • 胃肠道肿瘤学研究组临床试验(GITSG-7175)
  • 梅奥/中北部癌症治疗小组临床试验 (NCCTG-794751)
  • 国家外科辅助乳腺和肠道项目临床试验 (NSABP-R-01)
  • 随后的研究拟通过改善放射增敏作用、寻找最佳化疗药物和改进用药途径来延长患者的生存期。

    5-FU:以下研究对5-FU作为辅助治疗的最佳用药方式进行评估:

  • 组间协议86-47-51临床试验(MAYO-864751)
  • [循证依据等级:1iiA]
  • 组间0114临床试验(INT-0114 [CLB-9081])。
  • [循证依据等级:1iiA]
  • 组间0114临床试验。
  • (有关这些研究的更多信息,请参考本摘要“临床II和III期直肠癌”部分相关内容。)

    本研究排除已被临床接受的Ⅱ和Ⅲ期直肠癌术后放化疗方案,包括盆腔放疗(45 Gy-55 Gy) 期间,持续静脉输注5-FU以及4个周期的5-FU 静脉推注联合/不联合亚叶酸钙(LV)辅助维持化疗。

    NSABP-R-01试验将单纯手术与手术联合术后放化疗进行对比研究。

    随后,NSABP-R-02的研究探讨了在术后化疗中加入放疗是否能提高R-01研究报道的生存期优势。

    [循证依据等级:1iiA]

    在NSABP-R-02研究中,联用放疗显著降低了5年局部复发率(化疗联合放疗和仅化疗分别为8%和13%,P=0.02),但对生存期无明显影响。放疗或许能延长60岁以下已行经腹会阴联合切除术患者的生存期。

    本项试验在肿瘤界引发了关于术后放疗临床意义的讨论,但由于局部复发导致的严重并发症,摒弃放疗似乎还为时尚早。

    化疗方案

    表8描述了用于直肠癌治疗的化疗方案。

    表8. 用于直肠癌的药物联合治疗方案治疗后不良反应
    方案名称联合应用的药物剂量
    AIO 或德国AIO 叶酸,亦称为亚叶酸钙,5-FU、伊立替康伊立替康(100 mg/m2)和亚叶酸钙(500 mg/m2),静脉滴注2小时,第1天;随后5-FU(2000 mg/m2)静脉推注,输液泵持续静脉输注24小时,每年4次(52周)。
    CAPOX 卡培他滨联合奥沙利铂卡培他滨(1000 mg/m2),每日2次,第1-14天;奥沙利铂(70 mg/m2),第1天和第8天,每3周重复。
    Douillard 亚叶酸钙、5-FU、伊立替康伊立替康(180 mg/m2),静脉滴注2小时,第1天;亚叶酸钙(200 mg/m2),静脉滴注2小时,第1天和第2天。随后负荷剂量5-FU(400 mg/m2)静脉推注,然后 5-FU(600 mg/m2)输液泵持续静脉输注22小时,第1天和第2天,每2周重复。
    FOLFIRI 亚叶酸钙伊立替康(180 mg/m2)和亚叶酸钙(400 mg/m2),静脉滴注2小时,第1天;随后负荷剂量5-FU(400 mg/m2)静脉推注,第1天;然后 5-FU(2400-3000 mg/m2)输液泵持续静脉输注46小时,每2周重复。
    FOLFOX-4 亚叶酸钙奥沙利铂(85 mg/m2),静脉滴注2小时,第1天;亚叶酸钙(200 mg/m2),静脉滴注2小时,第1天和第2天。随后负荷剂量5-FU(400 mg/m2)静脉推注,然后 5-FU(600 mg/m2)输液泵持续静脉输注22小时,第1天和第2天,每2周重复。
    FOLFOX-6 奥沙利铂、亚叶酸钙、5-FU奥沙利铂(85-100 mg/m2)、亚叶酸钙(400 mg/m2),静脉滴注2小时,第1天。随后负荷剂量5-FU(400 mg/m2)静脉推注,第1天;然后 5-FU(2400-3000 mg/m2)输液泵持续静脉输注46小时,每2周重复。
    FOLFOXIRI 伊立替康、奥沙利铂、亚叶酸钙、5-FU伊立替康(165 mg/m2)静脉滴注60分钟;同步滴注奥沙利铂(85mg/m2)和亚叶酸钙(200 mg/m2),静脉滴注超过120分钟;随后 5-FU(3200 mg/m2)静脉输注48小时。
    FUFOX5-FU、亚叶酸钙、奥沙利铂奥沙利铂(50 mg/m2)和亚叶酸钙(500 mg/m2)联用5-FU(2000 mg/m2)静脉输注22小时,第1、8、22、29天。每36天重复。
    FUOX 5-FU联合奥沙利铂5-FU(2250 mg/m2)静脉输注48小时,第1、8、15、22、29、36天。联用奥沙利铂(85mg/m2),第1、15、29天,每6周重复。
    IFL (or Saltz)伊立替康、5-FU、亚叶酸钙伊立替康(125 mg/m2)联用5-FU(500 mg/m2)静脉推注,亚叶酸钙(20 mg/m2)静脉推注,周疗,连用4周,休息2周,每6周重复。
    XELOX 卡培他滨联合奥沙利铂口服卡培他滨(1000 mg/m2),每日2次,连用14天;奥沙利铂(130 mg/m2),第1天,每3周重复。
    5-FU = 5-氟尿嘧啶;AIO =肿瘤内科工作组; bid = 每日2次; IV = 静脉给药;LV = 亚叶酸钙

    治疗后不良反应

    直肠癌盆腔放疗的急性不良反应主要是胃肠道毒反应,具有自限性,一般在治疗结束后4-6周内消失。

    更令人担忧的是直肠癌治疗后有迟发性并发症的可能。行积极手术的直肠癌患者可能会出现慢性综合征,尤其在肛门括约肌受损的情况下。

    与单纯手术相比,放疗增加了慢性肠功能障碍、肛门括约肌功能障碍(如果实施了保肛术)和性功能障碍的发生率。

    对术后放化疗患者进行分析,结果显示放化疗组患者的慢性肠功能障碍发生率高于单纯手术组。

    Cochrane综述强调了放疗会增加再次手术风险,并增高迟发性直肠和性功能障碍风险。

    改进的放疗计划和技术可以最大限度地减少与治疗相关的急性和迟发性并发症。这些技术包括:

  • 高能量放疗设备。
  • 多个盆腔辐射野。
  • 俯卧位
  • 放疗患者的定制模具(腹板),尽可能多的将小肠从辐射野排除,并在治疗期间固定患者。
  • 保持膀胱充盈,尽可能多的将小肠从辐射野排除
  • 在放疗期间,口服显象剂显示小肠图像,尽量将小肠排除在辐射野之外。
  • 采用先进的三维或其他放疗技术。
  • 在欧洲,常采用术前放疗(5 Gy×5天)并于1周后行手术的治疗模式,而不是美国使用的长程放化疗。其中一个原因可能是,在美国担心高剂量照射可能会加重迟发不良反应。

    波兰一项研究将316名患者随机分为术前长程放化疗组(50.4Gy,28次;5-FU/LV组 )和术前短程放疗组(25 Gy,5次)。

    尽管主要终点是保肛,但长程组和短程组的迟发不良反应无显著差异(长程组7%,短疗程10%)。值得注意的是,未见肛门括约肌和性功能方面的相关数据。不良反应由医生决定,而不是患者本人。

    比较术前和术后辅助放化疗的临床试验,除应进一步阐明两种方法对患者常规主要终点DFS和OS的影响外,还应探索不同治疗方法对肠道功能和其他重要关于生活质量方面的作用(如保肛)。

    参考文献

  • Balch GC, De Meo A, Guillem JG: Modern management of rectal cancer: a 2006 update. World J Gastroenterol 12 (20): 3186-95, 2006.
  • Baxter NN, Garcia-Aguilar J: Organ preservation for rectal cancer. J Clin Oncol 25 (8): 1014-20, 2007.
  • Guillem JG, Cohen AM: Current issues in colorectal cancer surgery. Semin Oncol 26 (5): 505-13, 1999.
  • Cooper HS, Deppisch LM, Gourley WK, et al.: Endoscopically removed malignant colorectal polyps: clinicopathologic correlations. Gastroenterology 108 (6): 1657-65, 1995.
  • Seitz U, Bohnacker S, Seewald S, et al.: Is endoscopic polypectomy an adequate therapy for malignant colorectal adenomas? Presentation of 114 patients and review of the literature. Dis Colon Rectum 47 (11): 1789-96; discussion 1796-7, 2004.
  • MacFarlane JK, Ryall RD, Heald RJ: Mesorectal excision for rectal cancer. Lancet 341 (8843): 457-60, 1993.
  • Enker WE, Thaler HT, Cranor ML, et al.: Total mesorectal excision in the operative treatment of carcinoma of the rectum. J Am Coll Surg 181 (4): 335-46, 1995.
  • Zaheer S, Pemberton JH, Farouk R, et al.: Surgical treatment of adenocarcinoma of the rectum. Ann Surg 227 (6): 800-11, 1998.
  • Heald RJ, Smedh RK, Kald A, et al.: Abdominoperineal excision of the rectum--an endangered operation. Norman Nigro Lectureship. Dis Colon Rectum 40 (7): 747-51, 1997.
  • Lopez-Kostner F, Lavery IC, Hool GR, et al.: Total mesorectal excision is not necessary for cancers of the upper rectum. Surgery 124 (4): 612-7; discussion 617-8, 1998.
  • Gunderson LL, Sosin H: Areas of failure found at reoperation (second or symptomatic look) following "curative surgery" for adenocarcinoma of the rectum. Clinicopathologic correlation and implications for adjuvant therapy. Cancer 34 (4): 1278-92, 1974.
  • Sauer R, Becker H, Hohenberger W, et al.: Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 351 (17): 1731-40, 2004.
  • Sauer R, Liersch T, Merkel S, et al.: Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol 30 (16): 1926-33, 2012.
  • Roh MS, Colangelo LH, O'Connell MJ, et al.: Preoperative multimodality therapy improves disease-free survival in patients with carcinoma of the rectum: NSABP R-03. J Clin Oncol 27 (31): 5124-30, 2009.
  • Janjan NA, Khoo VS, Abbruzzese J, et al.: Tumor downstaging and sphincter preservation with preoperative chemoradiation in locally advanced rectal cancer: the M. D. Anderson Cancer Center experience. Int J Radiat Oncol Biol Phys 44 (5): 1027-38, 1999.
  • Crane CH, Skibber JM, Birnbaum EH, et al.: The addition of continuous infusion 5-FU to preoperative radiation therapy increases tumor response, leading to increased sphincter preservation in locally advanced rectal cancer. Int J Radiat Oncol Biol Phys 57 (1): 84-9, 2003.
  • Grann A, Minsky BD, Cohen AM, et al.: Preliminary results of preoperative 5-fluorouracil, low-dose leucovorin, and concurrent radiation therapy for clinically resectable T3 rectal cancer. Dis Colon Rectum 40 (5): 515-22, 1997.
  • Rich TA, Skibber JM, Ajani JA, et al.: Preoperative infusional chemoradiation therapy for stage T3 rectal cancer. Int J Radiat Oncol Biol Phys 32 (4): 1025-9, 1995.
  • Chari RS, Tyler DS, Anscher MS, et al.: Preoperative radiation and chemotherapy in the treatment of adenocarcinoma of the rectum. Ann Surg 221 (6): 778-86; discussion 786-7, 1995.
  • Hyams DM, Mamounas EP, Petrelli N, et al.: A clinical trial to evaluate the worth of preoperative multimodality therapy in patients with operable carcinoma of the rectum: a progress report of National Surgical Breast and Bowel Project Protocol R-03. Dis Colon Rectum 40 (2): 131-9, 1997.
  • Bosset JF, Magnin V, Maingon P, et al.: Preoperative radiochemotherapy in rectal cancer: long-term results of a phase II trial. Int J Radiat Oncol Biol Phys 46 (2): 323-7, 2000.
  • Hiotis SP, Weber SM, Cohen AM, et al.: Assessing the predictive value of clinical complete response to neoadjuvant therapy for rectal cancer: an analysis of 488 patients. J Am Coll Surg 194 (2): 131-5; discussion 135-6, 2002.
  • Lai LL, Fuller CD, Kachnic LA, et al.: Can pelvic radiotherapy be omitted in select patients with rectal cancer? Semin Oncol 33 (6 Suppl 11): S70-4, 2006.
  • Peeters KC, van de Velde CJ, Leer JW, et al.: Late side effects of short-course preoperative radiotherapy combined with total mesorectal excision for rectal cancer: increased bowel dysfunction in irradiated patients--a Dutch colorectal cancer group study. J Clin Oncol 23 (25): 6199-206, 2005.
  • Tepper JE, O'Connell M, Niedzwiecki D, et al.: Adjuvant therapy in rectal cancer: analysis of stage, sex, and local control--final report of intergroup 0114. J Clin Oncol 20 (7): 1744-50, 2002.
  • Gunderson LL, Sargent DJ, Tepper JE, et al.: Impact of T and N stage and treatment on survival and relapse in adjuvant rectal cancer: a pooled analysis. J Clin Oncol 22 (10): 1785-96, 2004.
  • O'Connell MJ, Martenson JA, Wieand HS, et al.: Improving adjuvant therapy for rectal cancer by combining protracted-infusion fluorouracil with radiation therapy after curative surgery. N Engl J Med 331 (8): 502-7, 1994.
  • Smalley SR, Benedetti JK, Williamson SK, et al.: Phase III trial of fluorouracil-based chemotherapy regimens plus radiotherapy in postoperative adjuvant rectal cancer: GI INT 0144. J Clin Oncol 24 (22): 3542-7, 2006.
  • Fisher B, Wolmark N, Rockette H, et al.: Postoperative adjuvant chemotherapy or radiation therapy for rectal cancer: results from NSABP protocol R-01. J Natl Cancer Inst 80 (1): 21-9, 1988.
  • Wolmark N, Wieand HS, Hyams DM, et al.: Randomized trial of postoperative adjuvant chemotherapy with or without radiotherapy for carcinoma of the rectum: National Surgical Adjuvant Breast and Bowel Project Protocol R-02. J Natl Cancer Inst 92 (5): 388-96, 2000.
  • Wong RK, Tandan V, De Silva S, et al.: Pre-operative radiotherapy and curative surgery for the management of localized rectal carcinoma. Cochrane Database Syst Rev (2): CD002102, 2007.
  • Randomised trial of surgery alone versus surgery followed by radiotherapy for mobile cancer of the rectum. Medical Research Council Rectal Cancer Working Party. Lancet 348 (9042): 1610-4, 1996.
  • Initial report from a Swedish multicentre study examining the role of preoperative irradiation in the treatment of patients with resectable rectal carcinoma. Swedish Rectal Cancer Trial. Br J Surg 80 (10): 1333-6, 1993.
  • Dahlberg M, Glimelius B, Graf W, et al.: Preoperative irradiation affects functional results after surgery for rectal cancer: results from a randomized study. Dis Colon Rectum 41 (5): 543-9; discussion 549-51, 1998.
  • Birgisson H, Påhlman L, Gunnarsson U, et al.: Adverse effects of preoperative radiation therapy for rectal cancer: long-term follow-up of the Swedish Rectal Cancer Trial. J Clin Oncol 23 (34): 8697-705, 2005.
  • Marijnen CA, van de Velde CJ, Putter H, et al.: Impact of short-term preoperative radiotherapy on health-related quality of life and sexual functioning in primary rectal cancer: report of a multicenter randomized trial. J Clin Oncol 23 (9): 1847-58, 2005.
  • Bujko K, Nowacki MP, Nasierowska-Guttmejer A, et al.: Long-term results of a randomized trial comparing preoperative short-course radiotherapy with preoperative conventionally fractionated chemoradiation for rectal cancer. Br J Surg 93 (10): 1215-23, 2006.
  • Kollmorgen CF, Meagher AP, Wolff BG, et al.: The long-term effect of adjuvant postoperative chemoradiotherapy for rectal carcinoma on bowel function. Ann Surg 220 (5): 676-82, 1994.
  • Martling A, Holm T, Johansson H, et al.: The Stockholm II trial on preoperative radiotherapy in rectal carcinoma: long-term follow-up of a population-based study. Cancer 92 (4): 896-902, 2001.
  • Dahlberg M, Glimelius B, Påhlman L: Improved survival and reduction in local failure rates after preoperative radiotherapy: evidence for the generalizability of the results of Swedish Rectal Cancer Trial. Ann Surg 229 (4): 493-7, 1999.
  • Guerrero Urbano MT, Henrys AJ, Adams EJ, et al.: Intensity-modulated radiotherapy in patients with locally advanced rectal cancer reduces volume of bowel treated to high dose levels. Int J Radiat Oncol Biol Phys 65 (3): 907-16, 2006.
  • Koelbl O, Richter S, Flentje M: Influence of patient positioning on dose-volume histogram and normal tissue complication probability for small bowel and bladder in patients receiving pelvic irradiation: a prospective study using a 3D planning system and a radiobiological model. Int J Radiat Oncol Biol Phys 45 (5): 1193-8, 1999.
  • Gunderson LL, Russell AH, Llewellyn HJ, et al.: Treatment planning for colorectal cancer: radiation and surgical techniques and value of small-bowel films. Int J Radiat Oncol Biol Phys 11 (7): 1379-93, 1985.
  • Rectal Cancer Treatment (PDQ®)

    Treatment Option Overview for Rectal Cancer

    The management of rectal cancer varies somewhat from that of colon cancer because of the increased risk of local recurrence and a poorer overall prognosis. Differences include surgical technique, the use of radiation therapy, and the method of chemotherapy administration. In addition to determining the intent of rectal cancer surgery (i.e., curative or palliative), it is important to consider therapeutic issues related to the maintenance or restoration of normal anal sphincter, genitourinary function, and sexual function.

    The approach to the management of rectal cancer is multimodal and involves a multidisciplinary team of cancer specialists with expertise in gastroenterology, medical oncology, surgical oncology, radiation oncology, and radiology.

    Table 6. Standard Treatment Options for Stages 0–III Rectal CancerTable 7. Treatment Options for Stage IV and Recurrent Rectal CancerPrimary Surgical Therapy
    Standard Treatment Options
    Treatment Options
    Stage 0 Rectal Cancer
    Stage I Rectal Cancer
    Stages II and III Rectal Cancer
    Treatment Options
    Stage IV and Recurrent Rectal Cancer
    Second-line chemotherapy
    Liver Metastases
    Intra-arterial chemotherapy after liver resection
    Table 7. Treatment Options for Stage IV and Recurrent Rectal CancerPrimary Surgical Therapy
    Treatment Options
    Stage IV and Recurrent Rectal Cancer
    Second-line chemotherapy
    Liver Metastases
    Intra-arterial chemotherapy after liver resection

    Primary Surgical Therapy

    The primary treatment for patients with rectal cancer is surgical resection of the primary tumor. The surgical approach to treatment varies according to the following:

  • Tumor location.
  • Stage of disease.
  • Presence or absence of high-risk features (i.e., positive margins, lymphovascular invasion, perineural invasion, and poorly differentiated histology).
  • Types of surgical resection include the following:

  • Polypectomy for select T1 cancers.
  • Transanal local excision and transanal endoscopic microsurgery for select clinically staged T1/T2 N0 rectal cancers.
  • Total mesorectal excision with autonomic nerve preservation techniques via low-anterior resection.
  • Total mesorectal excision via abdominoperineal resection for patients who are not candidates for sphincter-preservation, leaving patients with a permanent end-colostomy.
  • Polypectomy alone may be used in certain instances (T1) in which polyps with invasive cancer can be completely resected with clear margins and have favorable histologic features.

    Local excision of clinical T1 tumors is an acceptable surgical technique for appropriately selected patients. For all other tumors, a mesorectal excision is the treatment of choice. Very select patients with T2 tumors may be candidates for local excision. Local failure rates in the range of 4% to 8% after rectal resection with appropriate mesorectal excision (total mesorectal excision for low/middle rectal tumors and mesorectal excision at least 5 cm below the tumor for high rectal tumors) have been reported.

    For patients with advanced cancers of the mid- to upper rectum, low-anterior resection followed by the creation of a colorectal anastomosis may be the treatment of choice. For locally advanced rectal cancers for which radical resection is indicated, however, total mesorectal excision with autonomic nerve preservation techniques via low-anterior resection is preferable to abdominoperineal resection.

    The low incidence of local relapse after meticulous mesorectal excision has led some investigators to question the routine use of adjuvant radiation therapy. Because of an increased tendency for first failure in locoregional sites only, the impact of perioperative radiation therapy is greater in rectal cancer than in colon cancer.

    Chemoradiation Therapy

    Preoperative chemoradiation therapy

    Neoadjuvant therapy for rectal cancer, using preoperative chemoradiation therapy, is the preferred treatment option for patients with stages II and III disease. However, postoperative chemoradiation therapy for patients with stage II or III rectal cancer remains an acceptable option.

    [Level of evidence: 1iA]

    Preoperative chemoradiation therapy has become the standard of care for patients with clinically staged T3–T4 or node-positive disease (stages II/III), based on the results of several studies:

  • German Rectal Cancer Study Group trial.
  • National Surgical Adjuvant Breast and Bowel Project R-03 trial NSABP R-03.
  • [Level of evidence: 1iiA] (Refer to the Stages II and III Rectal Cancer section of this summary for more information.)
  • Multiple phase II and III studies examined the benefits of preoperative chemoradiation therapy, which include the following:

  • Tumor regression and downstaging of the tumor.
  • Improved tumor resectability.
  • Higher rate of local control.
  • Improved toxicity profile of chemoradiation therapy.
  • Higher rate of sphincter preservation.
  • Complete pathologic response rates of 10% to 25% may be achieved with preoperative chemoradiation therapy.

    However, preoperative radiation therapy is associated with increased complications compared with surgery alone; some patients with cancers at a lower risk of local recurrence might be adequately treated with surgery and adjuvant chemotherapy.

    (Refer to the Preoperative chemoradiation therapy section in the Stages II and III Rectal Cancer section of this summary for more information about these studies.)

    Postoperative chemoradiation therapy

    Preoperative chemoradiation therapy is the current standard of care for stages II and III rectal cancer. However, before 1990, the following studies noted an increase in both disease-free survival (DFS) and overall survival (OS) with the use of postoperative combined-modality therapy:

  • The Gastrointestinal Tumor Study Group trial (GITSG-7175).
  • The Mayo/North Central Cancer Treatment Group trial (NCCTG-794751).
  • The National Surgical Adjuvant Breast and Bowel Project trial (NSABP-R-01).
  • Subsequent studies have attempted to increase the survival benefit by improving radiation sensitization and by identifying the optimal chemotherapeutic agents and delivery systems.

    Fluorouracil (5-FU): The following studies examined optimal delivery methods for adjuvant 5-FU:

  • Intergroup protocol 86-47-51 trial (MAYO-864751).
  • [Level of evidence: 1iiA]
  • Intergroup 0114 trial (INT-0114 [CLB-9081]).
  • [Level of evidence: 1iiA]
  • Intergroup 0144.
  • (Refer to the Stages II and III Rectal Cancer section of this summary for detailed information about these study results.)

    Acceptable postoperative chemoradiation therapy for patients with stage II or III rectal cancer not enrolled in clinical trials includes continuous-infusion 5-FU during 45 Gy to 55 Gy pelvic radiation and four cycles of adjuvant maintenance chemotherapy with bolus 5-FU with or without modulation with leucovorin (LV).

    Findings from the NSABP-R-01 trial compared surgery alone with surgery followed by chemotherapy or radiation therapy.

    Subsequently, the NSABP-R-02 study, addressed whether adding postoperative radiation therapy to chemotherapy would enhance the survival advantage reported in R-01.

    [Level of evidence: 1iiA]

    In the NSABP-R-02 study, the addition of radiation therapy significantly reduced local recurrence at 5 years (8% for chemotherapy and radiation vs. 13% for chemotherapy alone, P = .02) but failed to demonstrate a significant survival benefit. Radiation therapy appeared to improve survival among patients younger than 60 years and among patients who underwent abdominoperineal resection.

    While this trial has initiated discussion in the oncologic community about the proper role of postoperative radiation therapy, omission of radiation therapy seems premature because of the serious complications of locoregional recurrence.

    Chemotherapy regimens

    Table 8 describes the chemotherapy regimens used to treat rectal cancer.

    Table 8. Drug Combinations Used to Treat Rectal CancerTreatment toxicity
    Regimen NameDrug CombinationDose
    AIO or German AIO Folic acid, also known as LV, 5-FU, and irinotecanIrinotecan (100 mg/m2) and LV (500 mg/m2) administered as 2-h infusions on d 1, followed by 5-FU (2,000 mg/m2) IV bolus administered via ambulatory pump weekly over 24 h, 4 times a y (52 wk).
    CAPOX Capecitabine and oxaliplatinCapecitabine (1,000 mg/m2) bid on d 1–14, plus oxaliplatin (70 mg/m2) on d 1 and 8 every 3 wk.
    Douillard Folic acid, 5-FU, and irinotecanIrinotecan (180 mg/m2) administered as a 2-h infusion on d 1, LV (200 mg/m2) administered as a 2-h infusion on d 1 and 2, followed by a loading dose of 5-FU (400 mg/m2) IV bolus, then 5-FU (600 mg/m2) administered via ambulatory pump over 22 h every 2 wk on d 1 and 2.
    FOLFIRI LV, 5-FU, and irinotecanIrinotecan (180 mg/m2) and LV (400 mg/m2) administered as 2-h infusions on d 1, followed by a loading dose of 5-FU (400 mg/m2) IV bolus administered on d 1, then 5-FU (2,400–3,000 mg/m2) administered via ambulatory pump over 46 h every 2 wk.
    FOLFOX4 Oxaliplatin, LV, and 5-FUOxaliplatin (85 mg/m2) administered as a 2-h infusion on day 1, LV (200 mg/m2) administered as a 2-h infusion on d 1 and 2, followed by a loading dose of 5-FU (400 mg/m2) IV bolus, then 5-FU (600 mg/m2) administered via ambulatory pump over 22 h every 2 wk on d 1 and 2.
    FOLFOX6 Oxaliplatin, LV, and 5-FUOxaliplatin (85–100 mg/m2) and LV (400 mg/m2) administered as 2-h infusions on d 1, followed by a loading dose of 5-FU (400 mg/m2) IV bolus on d 1, then 5-FU (2,400–3,000 mg/m2) administered via ambulatory pump over 46 h every 2 wk.
    FOLFOXIRI Irinotecan, oxaliplatin, LV, 5-FUIrinotecan (165 mg/m2) administered as a 60-min infusion, then concomitant infusion of oxaliplatin (85 mg/m2) and LV (200 mg/m2) over 120 min, followed by 5-FU (3,200 mg/m2) administered as a 48-h continuous infusion.
    FUFOX 5-FU, LV, and oxaliplatinOxaliplatin (50 mg/m2) plus LV (500 mg/m2) plus 5-FU (2,000 mg/m2) administered as a 22-h continuous infusion on d 1, 8, 22, and 29 every 36 d.
    FUOX 5-FU plus oxaliplatin5-FU (2,250 mg/m2) administered as a continuous infusion over 48 h on d 1, 8, 15, 22, 29, and 36 plus oxaliplatin (85 mg/m2) on d 1, 15, and 29 every 6 wk.
    IFL (or Saltz) Irinotecan, 5-FU, and LVIrinotecan (125 mg/m2) plus 5-FU (500 mg/m2) IV bolus and LV (20 mg/m2) IV bolus administered weekly for 4 out of 6 wk.
    XELOX Capecitabine plus oxaliplatinOral capecitabine (1,000 mg/m2) administered bid for 14 d plus oxaliplatin (130 mg/m2) on d 1 every 3 wk.
    5-FU = fluorouracil; AIO = Arbeitsgemeinschaft Internistische Onkologie; bid = twice a day; IV = intravenous; LV = leucovorin.

    Treatment toxicity

    The acute side effects of pelvic radiation therapy for rectal cancer are mainly the result of gastrointestinal toxicity, are self-limiting, and usually resolve within 4 to 6 weeks of completing treatment.

    Of greater concern is the potential for late morbidity after rectal cancer treatment. Patients who undergo aggressive surgical procedures for rectal cancer can have chronic symptoms, particularly if there is impairment of the anal sphincter.

    Patients treated with radiation therapy appear to have increased chronic bowel dysfunction, anorectal sphincter dysfunction (if the sphincter was surgically preserved), and sexual dysfunction than do patients who undergo surgical resection alone.

    An analysis of patients treated with postoperative chemotherapy and radiation therapy suggests that these patients may have more chronic bowel dysfunction than do patients who undergo surgical resection alone.

    A Cochrane review highlights the risks of increased surgical morbidity as well as late rectal and sexual function in association with radiation therapy.

    Improved radiation therapy planning and techniques may minimize these acute and late treatment-related complications. These techniques include the following:

  • The use of high-energy radiation machines.
  • The use of multiple pelvic radiation fields.
  • Prone patient positioning.
  • Customized patient molds (belly boards) to exclude as much small bowel as possible from the radiation fields and immobilize patients during treatment.
  • Bladder distention during radiation therapy to exclude as much small bowel as possible from the radiation fields.
  • Visualization of the small bowel through oral contrast during treatment planning so that when possible, the small bowel can be excluded from the radiation field.
  • The use of 3-dimensional or other advanced radiation planning techniques.
  • In Europe, it is common to deliver preoperative radiation therapy alone in one week (5 Gy × five daily treatments) followed by surgery one week later, rather than the long-course chemoradiation approach used in the United States. One reason for this difference is the concern in the United States for heightened late effects when high radiation doses per fraction are given.

    A Polish study randomly assigned 316 patients to preoperative long-course chemoradiation therapy (50.4 Gy in 28 daily fractions with 5-FU/LV) or short-course preoperative radiation therapy (25 Gy in 5 fractions).

    Although the primary endpoint was sphincter preservation, late toxicity was not statistically significantly different between the two treatment approaches (7% long course vs. 10% short course). Of note, data on anal sphincter and sexual function were not reported, and toxicity was physician determined, not patient reported.

    Ongoing clinical trials comparing preoperative and postoperative adjuvant chemoradiation therapy should further clarify the impact of either approach on bowel function and other important quality-of-life issues (e.g., sphincter preservation) in addition to the more conventional endpoints of DFS and OS.

    ReferenceSection

  • Balch GC, De Meo A, Guillem JG: Modern management of rectal cancer: a 2006 update. World J Gastroenterol 12 (20): 3186-95, 2006.
  • Baxter NN, Garcia-Aguilar J: Organ preservation for rectal cancer. J Clin Oncol 25 (8): 1014-20, 2007.
  • Guillem JG, Cohen AM: Current issues in colorectal cancer surgery. Semin Oncol 26 (5): 505-13, 1999.
  • Cooper HS, Deppisch LM, Gourley WK, et al.: Endoscopically removed malignant colorectal polyps: clinicopathologic correlations. Gastroenterology 108 (6): 1657-65, 1995.
  • Seitz U, Bohnacker S, Seewald S, et al.: Is endoscopic polypectomy an adequate therapy for malignant colorectal adenomas? Presentation of 114 patients and review of the literature. Dis Colon Rectum 47 (11): 1789-96; discussion 1796-7, 2004.
  • MacFarlane JK, Ryall RD, Heald RJ: Mesorectal excision for rectal cancer. Lancet 341 (8843): 457-60, 1993.
  • Enker WE, Thaler HT, Cranor ML, et al.: Total mesorectal excision in the operative treatment of carcinoma of the rectum. J Am Coll Surg 181 (4): 335-46, 1995.
  • Zaheer S, Pemberton JH, Farouk R, et al.: Surgical treatment of adenocarcinoma of the rectum. Ann Surg 227 (6): 800-11, 1998.
  • Heald RJ, Smedh RK, Kald A, et al.: Abdominoperineal excision of the rectum--an endangered operation. Norman Nigro Lectureship. Dis Colon Rectum 40 (7): 747-51, 1997.
  • Lopez-Kostner F, Lavery IC, Hool GR, et al.: Total mesorectal excision is not necessary for cancers of the upper rectum. Surgery 124 (4): 612-7; discussion 617-8, 1998.
  • Gunderson LL, Sosin H: Areas of failure found at reoperation (second or symptomatic look) following "curative surgery" for adenocarcinoma of the rectum. Clinicopathologic correlation and implications for adjuvant therapy. Cancer 34 (4): 1278-92, 1974.
  • Sauer R, Becker H, Hohenberger W, et al.: Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 351 (17): 1731-40, 2004.
  • Sauer R, Liersch T, Merkel S, et al.: Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol 30 (16): 1926-33, 2012.
  • Roh MS, Colangelo LH, O'Connell MJ, et al.: Preoperative multimodality therapy improves disease-free survival in patients with carcinoma of the rectum: NSABP R-03. J Clin Oncol 27 (31): 5124-30, 2009.
  • Janjan NA, Khoo VS, Abbruzzese J, et al.: Tumor downstaging and sphincter preservation with preoperative chemoradiation in locally advanced rectal cancer: the M. D. Anderson Cancer Center experience. Int J Radiat Oncol Biol Phys 44 (5): 1027-38, 1999.
  • Crane CH, Skibber JM, Birnbaum EH, et al.: The addition of continuous infusion 5-FU to preoperative radiation therapy increases tumor response, leading to increased sphincter preservation in locally advanced rectal cancer. Int J Radiat Oncol Biol Phys 57 (1): 84-9, 2003.
  • Grann A, Minsky BD, Cohen AM, et al.: Preliminary results of preoperative 5-fluorouracil, low-dose leucovorin, and concurrent radiation therapy for clinically resectable T3 rectal cancer. Dis Colon Rectum 40 (5): 515-22, 1997.
  • Rich TA, Skibber JM, Ajani JA, et al.: Preoperative infusional chemoradiation therapy for stage T3 rectal cancer. Int J Radiat Oncol Biol Phys 32 (4): 1025-9, 1995.
  • Chari RS, Tyler DS, Anscher MS, et al.: Preoperative radiation and chemotherapy in the treatment of adenocarcinoma of the rectum. Ann Surg 221 (6): 778-86; discussion 786-7, 1995.
  • Hyams DM, Mamounas EP, Petrelli N, et al.: A clinical trial to evaluate the worth of preoperative multimodality therapy in patients with operable carcinoma of the rectum: a progress report of National Surgical Breast and Bowel Project Protocol R-03. Dis Colon Rectum 40 (2): 131-9, 1997.
  • Bosset JF, Magnin V, Maingon P, et al.: Preoperative radiochemotherapy in rectal cancer: long-term results of a phase II trial. Int J Radiat Oncol Biol Phys 46 (2): 323-7, 2000.
  • Hiotis SP, Weber SM, Cohen AM, et al.: Assessing the predictive value of clinical complete response to neoadjuvant therapy for rectal cancer: an analysis of 488 patients. J Am Coll Surg 194 (2): 131-5; discussion 135-6, 2002.
  • Lai LL, Fuller CD, Kachnic LA, et al.: Can pelvic radiotherapy be omitted in select patients with rectal cancer? Semin Oncol 33 (6 Suppl 11): S70-4, 2006.
  • Peeters KC, van de Velde CJ, Leer JW, et al.: Late side effects of short-course preoperative radiotherapy combined with total mesorectal excision for rectal cancer: increased bowel dysfunction in irradiated patients--a Dutch colorectal cancer group study. J Clin Oncol 23 (25): 6199-206, 2005.
  • Tepper JE, O'Connell M, Niedzwiecki D, et al.: Adjuvant therapy in rectal cancer: analysis of stage, sex, and local control--final report of intergroup 0114. J Clin Oncol 20 (7): 1744-50, 2002.
  • Gunderson LL, Sargent DJ, Tepper JE, et al.: Impact of T and N stage and treatment on survival and relapse in adjuvant rectal cancer: a pooled analysis. J Clin Oncol 22 (10): 1785-96, 2004.
  • O'Connell MJ, Martenson JA, Wieand HS, et al.: Improving adjuvant therapy for rectal cancer by combining protracted-infusion fluorouracil with radiation therapy after curative surgery. N Engl J Med 331 (8): 502-7, 1994.
  • Smalley SR, Benedetti JK, Williamson SK, et al.: Phase III trial of fluorouracil-based chemotherapy regimens plus radiotherapy in postoperative adjuvant rectal cancer: GI INT 0144. J Clin Oncol 24 (22): 3542-7, 2006.
  • Fisher B, Wolmark N, Rockette H, et al.: Postoperative adjuvant chemotherapy or radiation therapy for rectal cancer: results from NSABP protocol R-01. J Natl Cancer Inst 80 (1): 21-9, 1988.
  • Wolmark N, Wieand HS, Hyams DM, et al.: Randomized trial of postoperative adjuvant chemotherapy with or without radiotherapy for carcinoma of the rectum: National Surgical Adjuvant Breast and Bowel Project Protocol R-02. J Natl Cancer Inst 92 (5): 388-96, 2000.
  • Wong RK, Tandan V, De Silva S, et al.: Pre-operative radiotherapy and curative surgery for the management of localized rectal carcinoma. Cochrane Database Syst Rev (2): CD002102, 2007.
  • Randomised trial of surgery alone versus surgery followed by radiotherapy for mobile cancer of the rectum. Medical Research Council Rectal Cancer Working Party. Lancet 348 (9042): 1610-4, 1996.
  • Initial report from a Swedish multicentre study examining the role of preoperative irradiation in the treatment of patients with resectable rectal carcinoma. Swedish Rectal Cancer Trial. Br J Surg 80 (10): 1333-6, 1993.
  • Dahlberg M, Glimelius B, Graf W, et al.: Preoperative irradiation affects functional results after surgery for rectal cancer: results from a randomized study. Dis Colon Rectum 41 (5): 543-9; discussion 549-51, 1998.
  • Birgisson H, Påhlman L, Gunnarsson U, et al.: Adverse effects of preoperative radiation therapy for rectal cancer: long-term follow-up of the Swedish Rectal Cancer Trial. J Clin Oncol 23 (34): 8697-705, 2005.
  • Marijnen CA, van de Velde CJ, Putter H, et al.: Impact of short-term preoperative radiotherapy on health-related quality of life and sexual functioning in primary rectal cancer: report of a multicenter randomized trial. J Clin Oncol 23 (9): 1847-58, 2005.
  • Bujko K, Nowacki MP, Nasierowska-Guttmejer A, et al.: Long-term results of a randomized trial comparing preoperative short-course radiotherapy with preoperative conventionally fractionated chemoradiation for rectal cancer. Br J Surg 93 (10): 1215-23, 2006.
  • Kollmorgen CF, Meagher AP, Wolff BG, et al.: The long-term effect of adjuvant postoperative chemoradiotherapy for rectal carcinoma on bowel function. Ann Surg 220 (5): 676-82, 1994.
  • Martling A, Holm T, Johansson H, et al.: The Stockholm II trial on preoperative radiotherapy in rectal carcinoma: long-term follow-up of a population-based study. Cancer 92 (4): 896-902, 2001.
  • Dahlberg M, Glimelius B, Påhlman L: Improved survival and reduction in local failure rates after preoperative radiotherapy: evidence for the generalizability of the results of Swedish Rectal Cancer Trial. Ann Surg 229 (4): 493-7, 1999.
  • Guerrero Urbano MT, Henrys AJ, Adams EJ, et al.: Intensity-modulated radiotherapy in patients with locally advanced rectal cancer reduces volume of bowel treated to high dose levels. Int J Radiat Oncol Biol Phys 65 (3): 907-16, 2006.
  • Koelbl O, Richter S, Flentje M: Influence of patient positioning on dose-volume histogram and normal tissue complication probability for small bowel and bladder in patients receiving pelvic irradiation: a prospective study using a 3D planning system and a radiobiological model. Int J Radiat Oncol Biol Phys 45 (5): 1193-8, 1999.
  • Gunderson LL, Russell AH, Llewellyn HJ, et al.: Treatment planning for colorectal cancer: radiation and surgical techniques and value of small-bowel films. Int J Radiat Oncol Biol Phys 11 (7): 1379-93, 1985.
  • 直肠癌治疗(PDQ®)

    临床0期直肠癌的治疗

    临床0期直肠癌的治疗的标准治疗

    0期直肠癌或原位癌是肿瘤最为表浅的一类直肠病变,并且局限于黏膜层,未侵犯固有层。

    临床0期直肠癌的治疗的标准治疗方法包括:

  • 息肉切除术或手术
  • 息肉切除术或手术

    临床0期直肠癌可采用局部切除术或单纯息肉切除术。

    由于其局限性特点,临床0期直肠癌治愈率较高。对于不能行局部切除的大病灶,可行经肛门或经阴道全层直肠切除术。

    当前的临床试验

    采用我们的临床试验搜索引擎,可查询正招募患者的NCI支持的癌症临床试验。搜索可按试验地点、治疗类型、药物名称及其他标准进行设置。还有一些临床试验相关的基本信息。

    参考文献

  • Bailey HR, Huval WV, Max E, et al.: Local excision of carcinoma of the rectum for cure. Surgery 111 (5): 555-61, 1992.
  • Rectal Cancer Treatment (PDQ®)

    Stage 0 Rectal Cancer Treatment

    Standard Treatment Options for Stage 0 Rectal Cancer

    Stage 0 rectal cancer or carcinoma in situ is the most superficial of all rectal lesions and is limited to the mucosa without invasion of the lamina propria.

    Standard treatment options for stage 0 rectal cancer include the following:

  • Polypectomy or surgery.
  • Polypectomy or surgery

    Local excision or simple polypectomy may be indicated for stage 0 rectal cancer tumors.

    Because of its localized nature at presentation, stage 0 rectal cancer has a high cure rate. For large lesions not amenable to local excision, full-thickness rectal resection by the transanal or transcoccygeal route may be performed.

    Current Clinical Trials

    Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

    ReferenceSection

  • Bailey HR, Huval WV, Max E, et al.: Local excision of carcinoma of the rectum for cure. Surgery 111 (5): 555-61, 1992.
  • 直肠癌治疗(PDQ®)

    临床I期直肠癌的治疗

    临床I期直肠癌的标准治疗

    临床I期肿瘤在黏膜下侵犯至黏膜下层(T1)或侵犯但未穿透肠壁肌层(T2)。由于病灶部位较为局限,临床I期直肠癌治愈率较高。

    临床I期直肠癌的标准治疗包括:

  • 手术联合/不联合放化疗
  • 手术联合/不联合放化疗

    临床I期直肠癌的手术治疗,有三种可能的方式:

  • 局部切除。局部切除仅适用于直肠超声或磁共振成像结果提示病灶局限于直肠壁且未侵犯直肠全层(如,非T3肿瘤)的病灶。T1肿瘤伴中-高分化,累及范围不到1/3肠壁周长最适合采用局部切除术。由于局部切除会增加局部复发和全身转移的风险,因此,只有少数T2肿瘤患者宜采用局部切除。经肛门或其他切除术
  • 联合/不联合围手术期体外照射疗法(EBRT)联用5-FU化疗或是可行的。
  • 低位前切除术。当可以保留足够的远端直肠以进行常规吻合或结肠吻合时,则可以进行广泛的手术切除和吻合。
  • 经腹会阴联合切除术。广泛手术切除联合经腹会阴切除术可用于治疗病变较深而不能行低位前切除术的患者
  • 病理分期T1的患者可能不需要术后治疗。T2及以上肿瘤或伴20%转移淋巴结的患者,应考虑联合其他治疗,如放疗和化疗或广泛直肠切除术。

    组织学分型差或局部切除后切缘阳性,可考虑低位前切除术或经腹会阴联合切除术,应按完整外科分期进行术后治疗。

    对于T1和T2肿瘤患者,尚未有随机临床试验对局部切除术联合/不联合术后放化疗与广泛手术切除(低前位切除术和腹会阴联合切除术)进行对比研究。

    循证依据(手术):

  • 癌症和白血病B组开展一项研究,根据前瞻性研究方案CLB-8984招募T1和T2直肠腺癌患者,这类患者的肿瘤均距离齿状线<10 cm,直径不超过4cm,肿瘤累及直肠环周径不超过40%。T1期肿瘤患者术后未进行辅助治疗,T2期肿瘤患者则行体外照射疗法(EBRT)(54 Gy,30次,5天/周)和5-FU(500 mg/m2,放疗第1至2天,第29-31天)治疗。
  • T1期肿瘤患者的中位随访时间为48个月,6年无复发生存率为83%,总体生存率为87%。
  • T2肿瘤患者的6年无复发生存率为71%,总体生存率为85%。
  • 目前的临床试验

    采用我们的临床试验搜索引擎,可查询正招募患者的NCI支持的癌症临床试验。搜索可按试验地点、治疗类型、药物名称及其他标准进行设置。还有一些临床试验相关的基本信息。

    参考文献

  • Bailey HR, Huval WV, Max E, et al.: Local excision of carcinoma of the rectum for cure. Surgery 111 (5): 555-61, 1992.
  • Benson R, Wong CS, Cummings BJ, et al.: Local excision and postoperative radiotherapy for distal rectal cancer. Int J Radiat Oncol Biol Phys 50 (5): 1309-16, 2001.
  • Sitzler PJ, Seow-Choen F, Ho YH, et al.: Lymph node involvement and tumor depth in rectal cancers: an analysis of 805 patients. Dis Colon Rectum 40 (12): 1472-6, 1997.
  • Steele GD, Herndon JE, Bleday R, et al.: Sphincter-sparing treatment for distal rectal adenocarcinoma. Ann Surg Oncol 6 (5): 433-41, 1999 Jul-Aug.
  • Rectal Cancer Treatment (PDQ®)

    Stage I Rectal Cancer Treatment

    Standard Treatment Options for Stage I Rectal Cancer

    Stage I tumors extend beneath the mucosa into the submucosa (T1) or into, but not through, the bowel muscle wall (T2). Because of its localized nature at presentation, stage I rectal cancer has a high cure rate.

    Standard treatment options for stage I rectal cancer include the following:

  • Surgery with or without chemoradiation therapy.
  • Surgery with or without chemoradiation therapy

    There are three potential options for surgical resection in stage I rectal cancer:

  • Local excision. Local excision is restricted to tumors that are confined to the rectal wall and that do not, on rectal ultrasound or magnetic resonance imaging, involve the full thickness of the rectum (i.e., are not T3 tumors). The ideal candidate for local excision has a T1 tumor with well-to-moderate differentiation that occupies less than one-third of the circumference of the bowel wall. Local excision is associated with a higher risk of local and systemic failure and is applicable to only very select patients with T2 tumors. Local transanal or other resection
  • with or without perioperative external-beam radiation therapy (EBRT) plus fluorouracil (5-FU) may be indicated.
  • Low-anterior resection. Wide surgical resection and anastomosis are options when an adequate low-anterior resection can be performed with sufficient distal rectum to allow a conventional anastomosis or coloanal anastomosis.
  • Abdominoperineal resection. Wide surgical resection with abdominoperineal resection is used for lesions too distal to permit low-anterior resection.
  • Patients with tumors that are pathologically T1 may not need postoperative therapy. Patients with tumors that are T2 or greater have lymph node involvement about 20% of the time. Patients may want to consider additional therapy, such as radiation therapy and chemotherapy, or wide surgical resection of the rectum.

    Patients with poor histologic features or positive margins after local excision may consider low-anterior resection or abdominoperineal resection and postoperative treatment as dictated by full surgical staging.

    For patients with T1 and T2 tumors, no randomized trials are available to compare local excision with or without postoperative chemoradiation therapy to wide surgical resection (low-anterior resection and abdominoperineal resection).

    Evidence (surgery):

  • Investigators with the Cancer and Leukemia Group B enrolled patients with T1 and T2 rectal adenocarcinomas that were within 10 cm of the dentate line and not more than 4 cm in diameter, and involving not more than 40% of the rectal circumference, onto a prospective protocol, CLB-8984. Patients with T1 tumors received no additional treatment after surgery, whereas patients with T2 tumors were treated with EBRT (54 Gy in 30 fractions, 5 days/week) and 5-FU (500 mg/m2 on days 1 through 2 and days 29 through 31 of radiation therapy).
  • For patients with T1 tumors, at 48 months median follow-up, the 6-year failure-free survival was 83% and overall survival (OS) rate was 87%.
  • For patients with T2 tumors, the 6-year failure-free survival was 71% and the OS rate was 85%.
  • Current Clinical Trials

    Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

    ReferenceSection

  • Bailey HR, Huval WV, Max E, et al.: Local excision of carcinoma of the rectum for cure. Surgery 111 (5): 555-61, 1992.
  • Benson R, Wong CS, Cummings BJ, et al.: Local excision and postoperative radiotherapy for distal rectal cancer. Int J Radiat Oncol Biol Phys 50 (5): 1309-16, 2001.
  • Sitzler PJ, Seow-Choen F, Ho YH, et al.: Lymph node involvement and tumor depth in rectal cancers: an analysis of 805 patients. Dis Colon Rectum 40 (12): 1472-6, 1997.
  • Steele GD, Herndon JE, Bleday R, et al.: Sphincter-sparing treatment for distal rectal adenocarcinoma. Ann Surg Oncol 6 (5): 433-41, 1999 Jul-Aug.
  • 直肠癌治疗(PDQ®)

    临床II和III期直肠癌的治疗

    临床II和III期直肠癌的标准治疗

    临床II和III期直肠癌的标准治疗包括:

  • 手术。
  • 术前放化疗。
  • 术前短程放疗、手术、化疗。
  • 术后放化疗。
  • 初始放化疗获得完全临床缓解后,需密切随诊监测。
  • 手术

    临床II和III期直肠癌患者可在放化疗前后行低位前切除或经腹会阴联合切除联合全直肠系膜切除术。

    回顾性研究表明,部分病理T3、N0患者虽然单纯采用手术治疗而未予任何其他治疗,但其局部和全身复发的风险仍非常低。

    术前放化疗

    基于数项研究的结果,术前放化疗已成为临床T3或T4或淋巴结阳性的直肠癌患者的标准治疗。

    循证依据(术前放化疗):

  • 德国直肠癌研究工作组(CAO/ARO/AIO-94[外科肿瘤学工作组/放射肿瘤学工作组/德国癌症学会医学肿瘤学工作组])将823例经超声分期的T3、T4或淋巴结阳性的直肠癌患者进行随机分配,一组给予术前放化疗,另一组给予术后放化疗。采用同步放化疗方案,肿瘤和盆腔淋巴结放疗(总剂量50.4 Gy,28次,每周5天),同步进行5-FU化疗(1000 mg/m2,静脉输注,连用5天,放疗的第1、5周)。
  • [循证依据等级:1iA] 两组全部患者均行全直肠系膜切除术并接受5-FU为基础的化疗4个周期。
  • 结果显示,术前放化疗组和术后放化疗组的5年总体生存率分别为76%和74%(P=0.80)。两组的5年累计局部复发率分别为6%和13%(P=0.006)。
  • 术前治疗组的3级或4级急性不良反应发生率为27%,术后治疗组为40%(P=0.001),长期不良反应的发生率分别为14%和24%(P=0.01)。
  • 两组患者中行经腹会阴联合切除术的病例数相同。其中有194例肿瘤患者分组前就被临床医生建议采用经腹会阴联合切除术。
  • 两组患者的10年总体生存率无明显差异(术前组59.6%,术后组59.9%,P=0.85)。然而,与术后治疗组相比,术前放化疗组患者的局部肿瘤控制具有明显优势(10年局部复发累积发生率:术前组为7.1%,术后组为10.1%;P=0.048)。两组10年累积远处转移的发生率和无疾病生存期(DFS)无显著差异。
  • 在术后治疗组,18%病例病理证实为临床I期,但被直肠内超声高估为T3、T4或N1疾病。在术前治疗组中,也有相似病例数可能被过度治疗。
  • 方案为:5-FU/亚叶酸钙(LV)联合放疗(45 Gy,25次,5.4 Gy辅助剂量)。
  • [循证依据等级:1iiA]
  • 中位随访时间8.4年,与术后组相比,术前放化疗可显著改善患者的5年无疾病生存率(64.7%比53.4%,P=0.011)。
  • 与德国直肠癌研究结果相似,两组患者的总体生存率无显著差异(术前组为74.5%,术后组为65.6%;P=0.065)。
  • 术前短程放疗,手术、化疗

    在欧洲和澳大利亚部分地区,术前短程放疗已成为临床的标准治疗。

    循证依据(术前短程放疗)

  • 瑞典直肠癌临床试验(NCT 00337545)曾对短程放疗的临床应用进行评估。
  • [循证依据等级:1iiA] 本项研究,共收集了1168例80岁以下临床I-III期可切除的直肠腺癌患者,随机分为术前放疗(25 Gy,5次)或单纯手术组。两组患者均未采取辅助化疗。
  • 放疗组和手术组的5年总体生存率分别为58%和48%(P=0.005)。
  • 放疗组局部肿瘤控制率为11%,手术组为27%(P<0.001)。
  • 随后,波兰直肠临床试验和Trans-Tasman放射肿瘤学组(TROG)比较了术前的短程放疗和标准长程联合5-FU化疗的临床疗效。

  • 在波兰直肠癌的临床试验中,将312例T3或T4的直肠癌患者随机分为两组,一组给予术前放疗(25 Gy,5次)并在7天内行全直肠系膜切除术,术后5-FU/LV辅助治疗6个月。另一组术前采用放化疗(50.4 Gy,28次,同步静脉推注5-FU/LV),放疗结束后4-6周内行全直肠系膜切除术,5-FU/LV辅助治疗4个月。
  • 研究的主要终点是检测到至少15%的保肛率差异,且括约肌功能保留需达80%。
  • 短程组患者的保肛率为61.2%,放化疗组为58%(P=0.570)。
  • 短程组和放疗化疗组的4年生存率分别为67.2%和66.2%(HR,1.01;95% CI,0.69-1.48;P=0.960)。
  • 短程组局部肿瘤复发HR为0.65(95%CI,0.32-1.28;P=0.210)。
  • 短程组与放化疗组的迟发不良反应无明显差异。
  • 在TROG试验(TROG 01.04[NCT00145769])中,将326例经超声分期或磁共振成像(MRI)诊断的T3、N0-N2,且肿瘤距肛缘<12cm的M0直肠腺癌患者进行随机分配。一组为短程放疗组(25Gy,5次),并于3-7天后行手术治疗。另一组长程放化疗(50.4 Gy,28次,同步静脉持续灌注5-FU),于4-6周后行手术。术后两组患者均行5-FU/LV辅助化疗。该试验被设计为具有80%的功效,可以在5%的显着性水平上进行双侧检验,以检测3年局部复发的10%差异。
  • 短程组3年局部肿瘤复发的累积发生率为7.5%,长程组为4.4%(P=0.24)。
  • 短程组和长程组的5年总体生存率分别为74%和70%(HR,1.12;95%CI,0.76-1.67;P=0.62)。
  • 英国医学研究委员会和加拿大国家癌症研究所根据短程放疗经验开展了一项随机研究(MRC CR07和NCIC-CTG C016[NCT 0003422]),比较了术前短程放疗和术后放化疗的临床疗效。
  • 在本项试验中,共收集了来自80个中心的1350例距离肛门<15cm的可切除直肠腺癌患者的临床资料。值得注意的是,盆腔核磁共振或超声检查不作为强制性项目。将患者随机分为两组,一组接受短程放疗(25Gy,5次),随后行全直肠系膜切除术。根据当地中心关于淋巴结和手术切缘的规定进行辅助化疗。另一组给予术后放化疗方案,即刻行手术治疗,如果患者的环周切缘≤1mm,应予术后放化疗(45 Gy,25次,同步给予5-FU化疗)。同样,还是根据淋巴结和手术切缘的情况选择辅助化疗。
  • 术前短疗程组3年局部肿瘤复发率为4.4%,选择性化疗放疗组为10.6%(HR,0.39;95%CI,0.27-0.58;P<0.0001)。
  • 两组患者的总体生存期无显著差别。
  • 综合考虑这些研究结果表明,术前的短程放疗和长程放化疗均可用于临床II期或III期直肠癌。

    术后放化疗

    由于全身化疗与放疗的结合与两种治疗手段不断改良,促进了术后辅助治疗的发展。现有一系列前瞻性随机临床试验对术后放疗联合5-FU为基础的化疗在II期和III期直肠癌的应用进行研究,包括:

    [循证依据等级:1iiA]

  • 胃肠道肿瘤学研究组临床试验(GITSG-7175)
  • 梅奥/中北部癌症治疗小组临床试验 (NCCTG-794751)
  • 国家外科辅助乳腺和肠道项目临床试验 (NSABP-R-01)
  • 这些研究结果显示,术后采用放化疗联合治疗,可延长患者的无疾病进展间隔期和总体生存期。这一结果发表于1990年,在国家癌症研究所主办的共识发展会议上,专家建议将术后联合治疗用于临床II和III期直肠癌。

    此后,术前放化疗成为标准治疗。但术后放化疗仍是一个替代治疗方法。(有关更多信息,请参阅本摘要“术前放化疗部分”相关内容。)

    其他证据(术后放化疗)

  • 组间方案研究86-47-51(MAYO-864751)比较了持续静脉输注5-FU(225 mg/m2/天,贯穿整个放疗期间)与静脉推注5-FU(500 mg/m2/天,连用3天,放疗第1周和第5周)两种不同给药方式对临床疗效的影响。
  • [循证依据等级:1iiA]
  • 持续静脉输注5-FU可使总体生存率提高10%。
  • 一项三组随机临床试验,对比5-FU辅助治疗6个周期的临床疗效是否优于仅在盆腔放疗期间5-FU的应用。中位随访5.7年。
  • 第1组:5-FU 放疗前(500 mg/m2/天,静脉推注)和放疗后(450 mg/m2/天,静脉推注),每次5天,2个周期。放疗期间持续静脉输注5-FU(225 mg/m2/天)。
  • 第2组:5-FU选择持续静脉输注,放疗前(300 mg/m2/天,连用42天)、放疗后(300 mg/m2/天,连用56天)和期间(225 mg/m2/天)。
  • 第3组:5-FU放疗前(5-FU,425 mg/m2/天,静脉推注;LV,20 mg/m2/天),放疗后(5-FU,380 mg/m2/天,静脉推注;LV,20 mg/m2/天),每次5天,2个周期。放疗期间(5-FU,400 mg/m2/天;LV,20 mg/m2/天;第1-4天,每28天重复)。左旋咪唑(150mg/天)在放疗前后用药3天,每14天重复。
  • 三组在无疾病生存率、总体生存率和局部肿瘤复发率方面均无明显差异(各组:3年无疾病生存率,67%-69%;3年总体生存率,81%-83%;局部肿瘤复发率,4.6%-8%)。
  • 致命性不良反应少于1%。3-4级不良反应的发生率,1组55%、3组49%,而持续输注组为4%。
  • [循证依据等级:1iiA]
  • 组间试验0114(INT-0114)的最终研究结果显示,中位随访时间7.4年,临床II期和III期直肠癌患者术后采用5-FU联合LV或左旋咪唑或两药同时应用,在生存期和局部肿瘤控制方面缺乏临床意义。
  • [循证依据等级:1iiA]
  • 一项对3791名参与临床试验的患者进行的汇总分析显示,T3、N0肿瘤患者采用手术联合化疗的5年总体生存率(84%)优于手术联合放疗和静推化疗组(76%)或手术联合放疗和持续灌注化疗组(80%)。
  • 化疗方案

    许多肿瘤学家将亚叶酸钙/5-FU/奥沙利铂(FOLFOX)作为直肠癌的标准辅助化疗。然而,目前还没有关于直肠癌的数据支持这一观点。在最新的直肠癌辅助治疗的临床试验中,FOLFOX已成为标准治疗。美国东部肿瘤协作组的临床试验(ECOG-E5202[NCT00217737])将术前或术后放化疗经治的临床II期或III期直肠癌患者随机分配,给予6个月FOLFOX单方案或FOLFOX联合贝伐单抗治疗。但由于进度过慢,该研究提早关闭,无相关数据。

    术前奥沙利铂联合放化疗

    在临床前模型,奥沙利铂已显示出放射增敏性。

    有关联合奥沙利铂和氟嘧啶为基础的化疗II期临床试验曾报道病理完全缓解率为14%-30%。

    多个研究的数据表明,病理完全缓解率与其他主要终点之间具有相关性,如无远处转移生存率、DFS和OS。

    奥沙利铂联合放疗同步用于直肠癌患者中的非试验性临床价值,目前尚不清楚。

    循证依据(术前奥沙利铂联合放化疗):

  • ACCORD 12/0405 Prodige 2(NCT00227747)试验,将598例临床分期T2、T3或可切除T4直肠癌患者随机分为两组,一组给予术前放疗(45 Gy,25次,持续至少5周)和卡培他滨(800mg/m2,每天2次,每周5天,休息2天)。另一组给予更高剂量的放疗(50 Gy,5次,超过5周)联合同等剂量的卡培他滨和奥沙利铂(50 mg/m2,周疗)。在化疗结束后6周内,两组98%患者行全直肠系膜切除术。
  • 病理完全缓解是主要终点(尽管从未被证实能真正替代为总体生存期)。奥沙利铂治疗组的病理完全缓解率较高(19.2%比13.9%),但差异无统计学意义(P=.09)。
  • 奥沙利铂治疗组的3级或4级不良反应发生率明显高于对照组(25%比11%;P<0.001),保肛率在两组间无显著差别(75%比78%)。
  • 同样,STAR-01试验研究了奥沙利铂联合5-FU放化疗在局部晚期直肠癌的作用。
  • [证据级别:1iA] 这项意大利研究共纳入747例可切除局部进展期T3或T4和/或N1至N2的中低位直肠腺癌患者。随机分为5-FU单药组和5-FU/奥沙利铂联合治疗组,两组的5-FU方案相同,联合组奥沙利铂(60 mg/m2)。虽然主要终点是OS,但初步报告已显示术前治疗具有一定的临床价值。
  • 两组的病理完全缓解率均为16%(OR,0.98;95%CI,0.66-1.44;P=0.904)。
  • 两组的淋巴结阳性率、固有肌层外肿瘤浸润率、环周切缘的阳性率均无显著差异。
  • 联用奥沙利铂后,治疗相关的3-4级急性不良反应发生率升高(24%比8%;P<0.001)。包括总体生存期的长期结果尚未报告。
  • NSABP-R-04(NCT00058474)试验将1608例临床T3、T4或临床淋巴结阳性距离肛缘<12cm的腺癌患者随机分为四个治疗组:
  • 静脉(IV)持续输注5-FU联合放疗。
  • 卡培他滨联合放疗。
  • 每周静脉持续输注5-FU联合奥沙利铂及放疗。
  • 卡培他滨加奥沙利铂(周疗)及放疗。
  • 本研究的主要目的是控制局部区域肿瘤控制。

    [循证依据等级:1ID] 本研究的初步结果以摘要形式发表在2011年美国临床肿瘤学会年会上,包括:

  • 5-FU与卡培他滨联合/不联合奥沙利铂的病理完全缓解率、保肛率、降期率均无显著性差异。
  • 奥沙利铂治疗组的3级和4级急性不良反应的发生率明显高于对照组(15.4%比6.6%;P<0.001)。
  • 德国CAO/ARO/AIO-04试验随机将1236例临床T3-T4或距肛缘<12cm淋巴结阳性的腺癌患者分为两组,一组给予5-FU化疗(第1周和第5周),另一组同步给予5-FU化疗(250 mg/m2)联合奥沙利铂化疗(50 mg/m2)。
  • [证据级别:1ID]
  • 与既往研究相比,采用奥沙利铂治疗患者的病理完全缓解率显著提高(17%比13%;P=0.038)。
  • 3级和4级不良反应的发生率无显著差异。然而,在奥沙利铂治疗的患者中,腹泻、恶心和呕吐更为常见。
  • 这两组患者采用的5-FU方案有所不同,这可能是导致结果差异的原因之一。尚需要更长的随诊时间,来确定不同给药方式对研究主要终点DFS的影响。
  • 术后奥沙利铂方案治疗

    根据多项研究的结果,作为一种放射增敏剂,奥沙利铂在原发性肿瘤治疗中无任何临床意义,或与治疗导致的急性不良反应增加有关。是否应将奥沙利铂添加到5-FU/LV辅助治疗中用于临床II期和III期直肠癌患者的术后治疗,尚未有定论。目前,还没有随机的III期研究支持奥沙利铂辅助治疗直肠癌。然而,在5-FU/LV方案中加入奥沙利铂作为辅助治疗已成为结肠癌的标准治疗。

    循证依据(术前奥沙利铂)

  • 在采用奥沙利铂/5-FU/LV辅助治疗结肠癌的随机多中心国际研究(MOSAIC)中,对FOLFOX4方案用药6个月后的不良反应和临床疗效(亚叶酸钙,200 mg/m2 ,静脉滴注2小时;其后5-FU,400 mg/m2,静脉推注 , 5-FU,600 mg/m2,静脉输注22小时,连续2天,每14天重复,连续12个周期;奥沙利铂 85 mg/m2,滴注2小时,第1天,同步给予亚叶酸钙。)与5-FU/LV治疗组(未联合奥沙利铂)进行观察。本研究的每组均有1123例患者。
  • 经过37个月的随访,研究的初步结果显示FOLFOX4组的3年无疾病生存期具有明显改善,为77.8%,对照组为72.9%,P=0.01。初步报告中,两组患者的总体生存期未见差异。
  • [循证依据等级:1iiDii]
  • 6年随访结果表明,两组患者的(II期和III期)总体生存期无显著差异(FOLFOX4组 78.5%比5-FU/LV组 76.0%;HR,0.84;95%CI,0.71–1.00)。
  • 在亚组分析中,接受FOLFOX4治疗的临床III期结肠癌患者的6年总体生存率为72.9%,5-FU/LV组为68.9%(HR,0.80;95%CI,0.65–0.97;P=0.023)。
  • [循证依据等级:1iiA]
  • FOLFOX4治疗组的不良反应更为多见,主要是中性粒细胞减少症(41%,>3级)和可逆性周围感觉神经性病变(12.4%,>3级)。
  • 已完成的NSABP-C-07研究结果证实并扩大了MOSAIC的成果。
  • 在NSABPC-07中,2492例临床II和III期结肠癌或直肠癌患者被随机分为两组,一组给予FLOX方案治疗(奥沙利铂 85 mg/m2,静脉滴注2小时,第1、15、29天,每8周为一个疗程。随后亚叶酸钙 500mg/m2,静脉滴注2小时,联合5-FU 500 mg/m2,静脉推注1小时,亚叶酸钙滴注后同步,第1、8、15、22、29和36,然后休息2周,共3个周期(24周)。另外一组采用除奥沙利铂以外相同的化疗方案(Roswell Park 方案)。
  • Roswell Park方案组的3年和4年无疾病生存率分别为71.8%和67%,FLOX方案组分别为76.1%和73.2%。
  • 危险比为0.80(95% CI,0.69-0.93),FLOX方案组的风险降低20%(P<0.004)。
  • 这些结肠癌的研究结果能否适用于直肠癌还不明确。目前还没有随机的III期研究支持FOLFOX作为常规辅助治疗用于直肠癌。

    初始放化疗获得完全临床缓解后,需密切随诊监测。

    自从直肠癌术前放化疗出现以来,标准治疗方法一直是推荐经腹会阴联合切除术或腹腔镜辅助直肠癌切除术进行手术切除。在大多数系列研究中,经过长程放化疗,10%-20%患者获得完全临床缓解,即通过影像学检查、直肠指检或乙状结肠镜检查未发现肿瘤征象。长期以来,人们一直认为,大多数因个人或医疗原因未接受手术的患者会出现局部和/或全身复发。然而,术前采用放化疗随后手术,病理结果为完全缓解的患者,其无疾病生存期优于未见病理完全缓解的患者。

    少数单一机构的研究对这一标准治疗表达了抗议,提出大多数具有临床完全缓解的患者即使不经手术也能治愈直肠癌。那么,许多患者在局部肿瘤复发时,便可通过手术(经腹会阴联合切除或腹腔镜辅助切除)予以切除。

    这些系列研究因其规模较小和固有的的选择偏见而受到阻碍。

    证据(初始放化疗获得完全临床缓解后,需密切随诊监测):

  • 英国研究人员开展一项研究对直肠癌患者获得临床完全缓解后的肿瘤学临床转归进行评估。
  • 这是一项倾向性得分匹配的队列分析。其中228例患者来自曼彻斯特的一家三级医疗中心,自2011年至2013年间,入组患者再术前放化疗后获得临床完全缓解后选择密切观察,另有98例患者来自于邻近三家医疗中心, 2005年开始采用观察等待策略。临床完全缓解的定义是同步放化疗结束8周后复查直肠指诊和内窥镜检查,提示直肠未见残余溃疡、狭窄或肿块,则考虑临床完全缓解。在临床或内镜检查中唯一与临床完全缓解一致的阳性结果是粘膜变白和毛细血管扩张。临床完全缓解的分类需要参考直肠系膜和盆腔的影像学检查。研究结果显示,将临床完全缓解组(129例)与接受同样方案治疗且手术切除的患者(228例)进行对比研究。与手术患者相比,选择“观察并等待”患者的肿瘤分期中T期和N期较早,分化程度较低。
  • 经过33个月中位随访,129例患者中,有44例(34%)选择了观察等待后出现局部肿瘤复发,其中36例患者进行了挽救性切除。
  • 在配对队列分析中,两组全部患者的3年非局部再生的无病生存时间为83%(95%CI,76-88):观察组为88%(95%CI,75-94),手术组为78%(95%CI,63-87)(log-rank检验,P=0.022)。
  • 观察组的3年总体生存率为96%(95%CI,88-98),而手术组为87%(95%CI,77-93)(log-rank检验,P=0.015)。
  • 观察组和手术组的3年无结肠造口生存率分别为74%(95%CI,64-82)和47%(95%CI,37-57;log-rank检验,P<0.0001)。
  • 观察组患者采取了更密切的随诊方案,包括门诊直肠指诊、核磁共振成像(前2年,每4-6个月复查);麻醉下检查或内镜检查;胸部、腹部和盆腔CT;在最初的2年里,至少进行2次癌胚抗原(CEA)检测。目前尚无最佳随诊方案。

    对于治疗后出现临床完全缓解的患者,可以考虑采用密切监测方法,而不是立即手术切除。

    目前的临床试验

    采用我们的临床试验搜索引擎,可查询正招募患者的NCI支持的癌症临床试验。搜索可按试验地点、治疗类型、药物名称及其他标准进行设置。还有一些临床试验相关的基本信息。

    参考文献

  • Willett CG, Badizadegan K, Ancukiewicz M, et al.: Prognostic factors in stage T3N0 rectal cancer: do all patients require postoperative pelvic irradiation and chemotherapy? Dis Colon Rectum 42 (2): 167-73, 1999.
  • Sauer R, Becker H, Hohenberger W, et al.: Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 351 (17): 1731-40, 2004.
  • Sauer R, Liersch T, Merkel S, et al.: Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol 30 (16): 1926-33, 2012.
  • Roh MS, Colangelo LH, O'Connell MJ, et al.: Preoperative multimodality therapy improves disease-free survival in patients with carcinoma of the rectum: NSABP R-03. J Clin Oncol 27 (31): 5124-30, 2009.
  • Improved survival with preoperative radiotherapy in resectable rectal cancer. Swedish Rectal Cancer Trial. N Engl J Med 336 (14): 980-7, 1997.
  • Bujko K, Nowacki MP, Nasierowska-Guttmejer A, et al.: Long-term results of a randomized trial comparing preoperative short-course radiotherapy with preoperative conventionally fractionated chemoradiation for rectal cancer. Br J Surg 93 (10): 1215-23, 2006.
  • Ngan SY, Burmeister B, Fisher RJ, et al.: Randomized trial of short-course radiotherapy versus long-course chemoradiation comparing rates of local recurrence in patients with T3 rectal cancer: Trans-Tasman Radiation Oncology Group trial 01.04. J Clin Oncol 30 (31): 3827-33, 2012.
  • Sebag-Montefiore D, Stephens RJ, Steele R, et al.: Preoperative radiotherapy versus selective postoperative chemoradiotherapy in patients with rectal cancer (MRC CR07 and NCIC-CTG C016): a multicentre, randomised trial. Lancet 373 (9666): 811-20, 2009.
  • Thomas PR, Lindblad AS: Adjuvant postoperative radiotherapy and chemotherapy in rectal carcinoma: a review of the Gastrointestinal Tumor Study Group experience. Radiother Oncol 13 (4): 245-52, 1988.
  • Krook JE, Moertel CG, Gunderson LL, et al.: Effective surgical adjuvant therapy for high-risk rectal carcinoma. N Engl J Med 324 (11): 709-15, 1991.
  • Fisher B, Wolmark N, Rockette H, et al.: Postoperative adjuvant chemotherapy or radiation therapy for rectal cancer: results from NSABP protocol R-01. J Natl Cancer Inst 80 (1): 21-9, 1988.
  • NIH consensus conference. Adjuvant therapy for patients with colon and rectal cancer. JAMA 264 (11): 1444-50, 1990.
  • O'Connell MJ, Martenson JA, Wieand HS, et al.: Improving adjuvant therapy for rectal cancer by combining protracted-infusion fluorouracil with radiation therapy after curative surgery. N Engl J Med 331 (8): 502-7, 1994.
  • Smalley SR, Benedetti JK, Williamson SK, et al.: Phase III trial of fluorouracil-based chemotherapy regimens plus radiotherapy in postoperative adjuvant rectal cancer: GI INT 0144. J Clin Oncol 24 (22): 3542-7, 2006.
  • Tepper JE, O'Connell M, Niedzwiecki D, et al.: Adjuvant therapy in rectal cancer: analysis of stage, sex, and local control--final report of intergroup 0114. J Clin Oncol 20 (7): 1744-50, 2002.
  • Gunderson LL, Sargent DJ, Tepper JE, et al.: Impact of T and N stage and treatment on survival and relapse in adjuvant rectal cancer: a pooled analysis. J Clin Oncol 22 (10): 1785-96, 2004.
  • Cividalli A, Ceciarelli F, Livdi E, et al.: Radiosensitization by oxaliplatin in a mouse adenocarcinoma: influence of treatment schedule. Int J Radiat Oncol Biol Phys 52 (4): 1092-8, 2002.
  • Gérard JP, Chapet O, Nemoz C, et al.: Preoperative concurrent chemoradiotherapy in locally advanced rectal cancer with high-dose radiation and oxaliplatin-containing regimen: the Lyon R0-04 phase II trial. J Clin Oncol 21 (6): 1119-24, 2003.
  • Machiels JP, Duck L, Honhon B, et al.: Phase II study of preoperative oxaliplatin, capecitabine and external beam radiotherapy in patients with rectal cancer: the RadiOxCape study. Ann Oncol 16 (12): 1898-905, 2005.
  • Rödel C, Liersch T, Hermann RM, et al.: Multicenter phase II trial of chemoradiation with oxaliplatin for rectal cancer. J Clin Oncol 25 (1): 110-7, 2007.
  • Ryan DP, Niedzwiecki D, Hollis D, et al.: Phase I/II study of preoperative oxaliplatin, fluorouracil, and external-beam radiation therapy in patients with locally advanced rectal cancer: Cancer and Leukemia Group B 89901. J Clin Oncol 24 (16): 2557-62, 2006.
  • Valentini V, Coco C, Minsky BD, et al.: Randomized, multicenter, phase IIb study of preoperative chemoradiotherapy in T3 mid-distal rectal cancer: raltitrexed + oxaliplatin + radiotherapy versus cisplatin + 5-fluorouracil + radiotherapy. Int J Radiat Oncol Biol Phys 70 (2): 403-12, 2008.
  • García-Aguilar J, Hernandez de Anda E, Sirivongs P, et al.: A pathologic complete response to preoperative chemoradiation is associated with lower local recurrence and improved survival in rectal cancer patients treated by mesorectal excision. Dis Colon Rectum 46 (3): 298-304, 2003.
  • Guillem JG, Chessin DB, Cohen AM, et al.: Long-term oncologic outcome following preoperative combined modality therapy and total mesorectal excision of locally advanced rectal cancer. Ann Surg 241 (5): 829-36; discussion 836-8, 2005.
  • Rödel C, Martus P, Papadoupolos T, et al.: Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol 23 (34): 8688-96, 2005.
  • Gérard JP, Azria D, Gourgou-Bourgade S, et al.: Comparison of two neoadjuvant chemoradiotherapy regimens for locally advanced rectal cancer: results of the phase III trial ACCORD 12/0405-Prodige 2. J Clin Oncol 28 (10): 1638-44, 2010.
  • Aschele C, Cionini L, Lonardi S, et al.: Primary tumor response to preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer: pathologic results of the STAR-01 randomized phase III trial. J Clin Oncol 29 (20): 2773-80, 2011.
  • Roh MS, Yothers GA, O'Connell MJ, et al.: The impact of capecitabine and oxaliplatin in the preoperative multimodality treatment in patients with carcinoma of the rectum: NSABP R-04. [Abstract] J Clin Oncol 29 (Suppl 15): A-3503, 2011.
  • Rödel C, Liersch T, Becker H, et al.: Preoperative chemoradiotherapy and postoperative chemotherapy with fluorouracil and oxaliplatin versus fluorouracil alone in locally advanced rectal cancer: initial results of the German CAO/ARO/AIO-04 randomised phase 3 trial. Lancet Oncol 13 (7): 679-87, 2012.
  • André T, Boni C, Mounedji-Boudiaf L, et al.: Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 350 (23): 2343-51, 2004.
  • André T, Boni C, Navarro M, et al.: Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol 27 (19): 3109-16, 2009.
  • de Gramont A, Boni C, Navarro M, et al.: Oxaliplatin/5FU/LV in the adjuvant treatment of stage II and stage III colon cancer: efficacy results with a median follow-up of 4 years. [Abstract] J Clin Oncol 23 (Suppl 16): A-3501, 246s, 2005.
  • Maas M, Nelemans PJ, Valentini V, et al.: Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol 11 (9): 835-44, 2010.
  • Maas M, Beets-Tan RG, Lambregts DM, et al.: Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol 29 (35): 4633-40, 2011.
  • Lambregts DM, Maas M, Bakers FC, et al.: Long-term follow-up features on rectal MRI during a wait-and-see approach after a clinical complete response in patients with rectal cancer treated with chemoradiotherapy. Dis Colon Rectum 54 (12): 1521-8, 2011.
  • Smith JD, Ruby JA, Goodman KA, et al.: Nonoperative management of rectal cancer with complete clinical response after neoadjuvant therapy. Ann Surg 256 (6): 965-72, 2012.
  • Dalton RS, Velineni R, Osborne ME, et al.: A single-centre experience of chemoradiotherapy for rectal cancer: is there potential for nonoperative management? Colorectal Dis 14 (5): 567-71, 2012.
  • Renehan AG, Malcomson L, Emsley R, et al.: Watch-and-wait approach versus surgical resection after chemoradiotherapy for patients with rectal cancer (the OnCoRe project): a propensity-score matched cohort analysis. Lancet Oncol 17 (2): 174-83, 2016.
  • Rectal Cancer Treatment (PDQ®)

    Stages II and III Rectal Cancer Treatment

    Standard Treatment Options for Stages II and III Rectal Cancer

    Standard treatment options for stages II and III rectal cancer include the following:

  • Surgery.
  • Preoperative chemoradiation therapy.
  • Short-course preoperative radiation therapy followed by surgery and chemotherapy.
  • Postoperative chemoradiation therapy.
  • Primary chemoradiation therapy followed by intensive surveillance for complete clinical responders.
  • Surgery

    Total mesorectal excision with either low anterior resection or abdominoperineal resection is usually performed for stages II and III rectal cancer before or after chemoradiation therapy.

    Retrospective studies have demonstrated that some patients with pathological T3, N0 disease treated with surgery and no additional therapy have a very low risk of local and systemic recurrence.

    Preoperative chemoradiation therapy

    Preoperative chemoradiation therapy has become the standard of care for patients with clinically staged T3 or T4 or node-positive disease, based on the results of several studies.

    Evidence (preoperative chemoradiation therapy):

  • The German Rectal Cancer Study Group (CAO/ARO/AIO-94 [Working Group of Surgical Oncology/Working Group of Radiation Oncology/Working Group of Medical Oncology of the Germany Cancer Society]) randomly assigned 823 patients with ultrasound-staged T3 or T4 or lymph node-positive rectal cancer to either preoperative chemoradiation therapy or postoperative chemoradiation therapy (50.4 Gy in 28 daily fractions to the tumor and pelvic lymph nodes concurrent with infusional fluorouracil [5-FU] 1,000 mg/m2 daily for 5 days during the first and fifth weeks of radiation therapy).
  • [Level of evidence: 1iA] All patients underwent total mesorectal excision and received four additional cycles of 5-FU–based chemotherapy.
  • The 5-year overall survival (OS) rates were 76% for preoperative chemoradiation therapy and 74% for postoperative chemoradiation therapy (P = .80). The 5-year cumulative incidence of local relapse was 6% for patients assigned to the preoperative chemoradiation therapy group and 13% for patients in the postoperative chemoradiation therapy group (P = .006).
  • Grade 3 or 4 acute toxic effects occurred in 27% of patients in the preoperative-treatment group and in 40% of patients in the postoperative-treatment group (P = .001); the corresponding rates of long-term toxic effects were 14% and 24%, respectively (P = .01).
  • The same number of patients underwent abdominoperineal resection in each arm. However, among the 194 patients with tumors that were determined by the surgeon before randomization to require an abdominoperineal excision, a statistically significant increase in sphincter preservation was achieved among patients who received preoperative chemoradiation therapy (P = .004). These results have now been updated with a median follow-up of 11 years.
  • The 10-year OS was equivalent in both arms, (59.6% in the preoperative group vs. 59.9% in the postoperative group; P = .85). However, a local control benefit persists among patients treated with preoperative chemoradiation therapy compared with patients treated with postoperative chemoradiation therapy (10-year cumulative incidence of local relapse: 7.1% in the preoperative group vs. 10.1% in the postoperative group; P = .048). There were no significant differences detected for 10-year cumulative incidence of distant metastases or disease-free survival (DFS).
  • Among the patients assigned to the postoperative chemoradiation therapy treatment arm, 18% actually had pathologically determined stage I disease and were overestimated by endorectal ultrasound to have T3 or T4 or N1 disease. A similar number of patients were possibly overtreated in the preoperative treatment group.
  • The NSABP R-03 trial similarly compared preoperative versus postoperative chemoradiation therapy for patients with clinically staged T3 or T4 or lymph node-positive rectal cancer. Chemotherapy consisted of 5-FU/leucovorin (LV) with 45 Gy in 25 fractions with a 5.4 Gy boost. Although the intended sample size was 900 patients, the study with 267 patients closed early because of poor accrual.
  • [Level of evidence: 1iiA]
  • With a median follow-up of 8.4 years, preoperative chemoradiation therapy was found to confer a significant improvement in 5-year DFS (64.7% vs. 53.4% for postoperative patients; P = .011).
  • Similar to the German Rectal Cancer Study, there was no significant difference in OS between treatment arms (74.5% for preoperative chemoradiation therapy vs. 65.6% for postoperative chemoradiation therapy; P =. 065).
  • Short-course preoperative radiation therapy followed by surgery and chemotherapy

    The use of short-course radiation therapy before surgery has been a standard approach in parts of Europe and Australia.

    Evidence (short-course preoperative radiation therapy):

  • The use of short-course radiation therapy was evaluated in a randomized study in the Swedish Rectal Cancer Trial (NCT00337545).
  • [Level of evidence: 1iiA] In the trial, 1,168 patients younger than 80 years with stage I to stage III resectable rectal adenocarcinoma were randomly assigned to receive preoperative radiation therapy (25 Gy in five fractions) or to undergo immediate surgery. Patients did not receive adjuvant chemotherapy.
  • The 5-year OS rate was 58% in the radiation therapy group and 48% in the surgery group (P = .005).
  • The rate of local control was 11% in the radiation therapy group and 27% in the surgery group (P < .001).
  • Subsequently, the Polish Rectal Trial and the Trans-Tasman Radiation Oncology Group (TROG) compared short-course preoperative radiation therapy with the standard long-course preoperative chemoradiation therapy administered with 5-FU.

  • In the Polish Rectal Trial, 312 patients with clinical stage T3 or T4 rectal cancer were randomly assigned to receive preoperative radiation therapy (25 Gy in five fractions) followed by total mesorectal excision within 7 days, 6 months of adjuvant 5-FU/LV or preoperative chemoradiation therapy (50.4 Gy in 28 fractions with concurrent bolus 5-FU/LV), total mesorectal excision in 4 to 6 weeks after completion of radiation therapy, and 4 months of adjuvant 5-FU/LV.
  • The primary endpoint of the study was to detect a difference of at least 15% in sphincter preservation with a power of 80%.
  • The rates of sphincter preservation were 61.2% in the short-course group and 58% in the chemoradiation therapy group (P = .570).
  • The actuarial 4-year survival rate was 67.2% in the short-course group and 66.2% in the chemoradiation therapy group (hazard ratio [HR], 1.01; 95% confidence interval [CI], 0.69–1.48; P = .960).
  • The HR for local recurrence in the short-course group compared with the chemoradiation therapy group was 0.65 (95% CI, 0.32–1.28; P = .210).
  • There was no difference in late toxicity between the short-course group and the chemoradiation therapy group.
  • In the TROG trial (TROG 01.04 [NCT00145769]), 326 patients with ultrasound-staged or magnetic resonance imaging (MRI)–staged T3, N0 to N2, M0 rectal adenocarcinoma within 12 cm from the anal verge were randomly assigned to receive short-course radiation therapy (25 Gy in five fractions) followed by surgery 3 to 7 days later or long-course chemoradiation therapy (50.4 Gy in 28 fractions with concurrent continuous infusional 5-FU) followed by surgery in 4 to 6 weeks. All patients received adjuvant chemotherapy (5-FU/LV) after surgery. The trial was designed to have 80% power to detect a 10% difference in local recurrence at 3 years with a two-sided test at the 5% level of significance.
  • Cumulative incidence of local recurrence at 3 years was 7.5% for the short-course group and 4.4% for the long-course group (P = .24).
  • OS at 5 years was 74% for the short-course group and 70% for the long-course group (HR, 1.12; 95% CI, 0.76–1.67; P = .62).
  • The Medical Research Council of the United Kingdom and the National Cancer Institute of Canada built on the short-course experience and conducted a randomized study (MRC CR07 and NCIC-CTG C016 [NCT00003422]) that compared short-course preoperative radiation therapy with selective postoperative chemoradiation therapy.
  • In the trial, 1,350 patients from 80 centers who had resectable rectal adenocarcinomas that were less than 15 cm from the anal verge were randomly assigned. Of note, pelvic MRI or ultrasound was not mandated. Patients randomly assigned to short-course radiation therapy received 25 Gy in five fractions followed by total mesorectal excision and then adjuvant chemotherapy according to the local center policy about nodal and margin status. Patients randomly assigned to selective postoperative chemoradiation therapy received immediate surgery followed by postoperative chemoradiation (45 Gy in 25 fractions with concurrent 5-FU) if their circumferential resection margin was 1 mm or smaller. Adjuvant chemotherapy for the group that received selective chemoradiation therapy was again given on the basis of local standards regarding nodal and margin status.
  • The risk of local recurrence at 3 years was 4.4% in the preoperative short-course group and 10.6% in the selective chemoradiation therapy group (HR, 0.39; 95% CI, 0.27–0.58; P < .0001).
  • OS did not differ between the groups.
  • Taken together, these studies demonstrate that short-course preoperative radiation therapy and long-course preoperative chemoradiation therapy are both reasonable treatment strategies for patients with stage II or III rectal adenocarcinoma.

    Postoperative chemoradiation therapy

    Progress in the development of postoperative treatment regimens relates to the integration of systemic chemotherapy and radiation therapy, as well as redefining the techniques for both modalities. The efficacy of postoperative radiation therapy and 5-FU-based chemotherapy for stages II and III rectal cancer was established by a series of prospective, randomized clinical trials, including the following:

    [Level of evidence: 1iiA]

  • Gastrointestinal Tumor Study Group (GITSG-7175).
  • Mayo/North Central Cancer Treatment Group (NCCTG-794751).
  • National Surgical Adjuvant Breast and Bowel Project (NSABP-R-01).
  • These studies demonstrated an increase in DFS interval and OS when radiation therapy was combined with chemotherapy after surgical resection. After the publication in 1990 of the results of these trials, experts at a National Cancer Institute-sponsored Consensus Development Conference recommended postoperative combined-modality treatment for patients with stages II and III rectal carcinoma.

    Since that time, preoperative chemoradiation therapy has become the standard of care, although postoperative chemoradiation therapy is still an acceptable alternative. (Refer to the Preoperative chemoradiation therapy section of this summary for more information.)

    Additional evidence (postoperative chemoradiation therapy):

  • Intergroup protocol 86-47-51 (MAYO-864751) compared continuous-infusion 5-FU (225 mg/m2/day throughout the entire course of radiation therapy) with bolus 5-FU (500 mg/m2/day for 3 consecutive days during the first and fifth weeks of radiation therapy).
  • [Level of evidence: 1iiA]
  • A 10% improvement in OS was demonstrated with the use of continuous-infusion 5-FU.
  • A three-arm randomized trial, determined whether continuous-infusion 5-FU given throughout the entire standard six-cycle course of adjuvant chemotherapy was more effective than continuous infusion 5-FU given only during pelvic radiation therapy. Median follow-up was 5.7 years.
  • Arm 1 received bolus 5-FU in two 5-day cycles before (500 mg/m2/day) and after (450 mg/m2/day) radiation therapy, with protracted venous infusion 5-FU (225 mg/m2/day) during radiation therapy.
  • Arm 2 received continuous infusion 5-FU before (300 mg/m2/day for 42 days), after (300 mg/m2/day for 56 days), and during (225 mg/m2/day) radiation therapy.
  • Arm 3 received bolus 5-FU/LV in two 5-day cycles before (5-FU, 425 mg/m2/day; LV, 20 mg/m2/day) and after (5-FU, 380 mg/m2/day; LV, 20 mg/m2/day) radiation therapy, and bolus 5-FU/LV (5-FU, 400 mg/m2/day; LV, 20 mg/m2/day; days 1 to 4, every 28 days) during radiation therapy. Levamisole (150 mg/day) was administered in 3-day cycles every 14 days before and after radiation therapy.
  • No DFS, OS, or locoregional failure difference was detected (across all arms: 3-year DFS, 67%–69%; 3-year OS, 81%–83%; locoregional failure, 4.6%–8%).
  • Lethal toxicity was less than 1%, with grades 3 to 4 hematologic toxicity in 55% of patients in arm 1 and in 49% of the patients in arm 3, versus in 4% of patients in the continuous-infusion arm.
  • [Level of evidence: 1iiA]
  • The final study results of Intergroup trial 0114 (INT-0114) showed no survival or local-control benefit with the addition of LV, levamisole, or both to 5-FU administered postoperatively for patients with stages II and III rectal cancers at a median follow-up of 7.4 years.
  • [Level of evidence: 1iiA]
  • A pooled analysis of 3,791 patients enrolled in clinical trials demonstrated that, for patients with T3, N0 disease, the 5-year OS rate with surgery plus chemotherapy (OS, 84%) compared favorably with the survival rates of patients treated with surgery plus radiation therapy and bolus chemotherapy (OS, 76%) or surgery plus radiation therapy and protracted-infusion chemotherapy (OS, 80%).
  • Chemotherapy Regimens

    Many academic oncologists suggest that LV/5-FU/oxaliplatin (FOLFOX) be considered the standard for adjuvant chemotherapy in rectal cancer. However, there are no data about rectal cancer to support this consideration. FOLFOX has become the standard arm in the latest Intergroup study evaluating adjuvant chemotherapy in rectal cancer. An Eastern Cooperative Oncology Group trial (ECOG-E5202 [NCT00217737]) randomly assigned patients with stage II or III rectal cancer who received preoperative or postoperative chemoradiation therapy to receive 6 months of FOLFOX with or without bevacizumab, but this trial closed because of poor accrual; no efficacy data are available.

    Preoperative oxaliplatin with chemoradiation therapy

    Oxaliplatin has also been shown to have radiosensitizing properties in preclinical models.

    Phase II studies that combined oxaliplatin with fluoropyrimidine-based chemoradiation therapy have reported pathologic complete response rates ranging from 14% to 30%.

    Data from multiple studies have demonstrated a correlation between rates of pathologic complete response and endpoints including distant metastasis-free survival, DFS, and OS.

    There is no current role for off-trial use of concurrent oxaliplatin and radiation therapy in the treatment of patients with rectal cancer.

    Evidence (preoperative oxaliplatin with chemoradiation therapy):

  • The ACCORD 12/0405-Prodige 2 (NCT00227747) trial, which randomly assigned 598 patients with clinically staged T2 or T3 or resectable T4 rectal cancer accessible by digital rectal examination to either preoperative radiation therapy (45 Gy in 25 fractions over 5 weeks) with capecitabine (800 mg/m2 twice daily 5 of every 7 days) or to a higher dose of radiation (50 Gy in 25 fractions over 5 weeks) with the same dose of capecitabine and oxaliplatin (50 mg/m2 weekly). Total mesorectal excision was performed in 98% of both groups at a median interval of 6 weeks after chemoradiation therapy was completed.
  • Pathologic complete response was the primary endpoint (albeit never validated as a true surrogate of OS). A higher percentage of patients achieved a pathologic complete response in the oxaliplatin-treated group (19.2% vs. 13.9%); however, the difference did not reach statistical significance (P = .09).
  • The rate of grade 3 or 4 toxicity was significantly higher in the oxaliplatin-treated group (25% vs. 11%; P < .001), and there was no difference in the rate of sphincter-sparing surgery (75% vs. 78%).
  • Similarly, the STAR-01 trial investigated the role of oxaliplatin combined with 5-FU chemoradiation therapy for locally advanced rectal cancer.
  • [Level of evidence: 1iiA] This Italian study randomly assigned 747 patients with resectable, locally advanced, clinically staged T3 or T4 and/or clinical N1 to N2 adenocarcinoma of the mid- to low-rectum to receive either continuous-infusion 5-FU with radiation therapy or to receive the same regimen in combination with oxaliplatin (60 mg/m2). Although the primary endpoint was OS, a protocol-planned analysis of response to preoperative therapy has been preliminarily reported.
  • The rate of pathologic complete response was equivalent at 16% in both arms (odds ratio, 0.98; 95% CI, 0.66–1.44; P = .904).
  • There was no difference noted in the rate of pathologically positive lymph nodes, tumor infiltration beyond the muscularis propria, or the rate of circumferential margin positivity.
  • An increase in grades 3 to 4 treatment-related acute toxicity was noted with the addition of oxaliplatin (24% vs. 8%; P <.001). Longer-term outcomes including OS have not yet been reported.
  • The NSABP-R-04 (NCT00058474) trial randomly assigned 1,608 patients with clinically staged T3 or T4 or clinical node-positive adenocarcinoma within 12 cm of the anal verge in a 2 × 2 factorial design to one of the following four treatment groups:
  • Intravenous (IV) continuous infusion 5-FU with radiation therapy.
  • Capecitabine with radiation therapy.
  • IV continuous infusion 5-FU plus weekly oxaliplatin with radiation therapy.
  • Capecitabine plus weekly oxaliplatin with radiation therapy.
  • The primary objective of this study is locoregional disease control.

    [Level of evidence: 1iiD] Preliminary results, reported in abstract form at the 2011 American Society of Clinical Oncology annual meeting, demonstrated the following:

  • There was no significant difference in the rates of pathologic complete response, sphincter-sparing surgery, or surgical downstaging between the 5-FU and capecitabine regimens or between the regimens with and without oxaliplatin.
  • Patients treated with oxaliplatin had significantly higher rates of grade 3 and grade 4 acute toxicity (15.4% vs. 6.6%; P < .001).
  • The German CAO/ARO/AIO-04 trial randomly assigned 1,236 patients with clinically staged T3 to T4 or clinical lymph node-positive adenocarcinoma within 12 cm from the anal verge to receive either concurrent chemoradiation therapy with 5-FU (week 1 and week 5) or concurrent chemoradiation therapy with 5-FU daily (250 mg/m2) and oxaliplatin (50 mg/m2).
  • [Level of evidence: 1iiD]
  • In contrast to the previous studies, a significantly higher rate of pathologic complete response was achieved in patients who received oxaliplatin (17% vs. 13%; P = .038).
  • There was no significant difference in rates of overall grades 3 and 4 toxicity; however, diarrhea and nausea and vomiting were more common among those treated with oxaliplatin.
  • The 5-FU schedules in this study differed between the two arms, which may have contributed to the difference in outcomes noted. Longer follow-up will be necessary to determine the effect on the primary endpoint of the study, DFS.
  • Postoperative oxaliplatin-containing regimens

    On the basis of results of several studies, oxaliplatin as a radiation sensitizer does not appear to add any benefit in terms of primary tumor response, and it has been associated with increased acute treatment-related toxicity. The question of whether oxaliplatin should be added to adjuvant 5-FU/LV for postoperative management of stages II and III rectal cancer is an ongoing debate. There are no randomized phase III studies to support the use of oxaliplatin for the adjuvant treatment of rectal cancer. However, the addition of oxaliplatin to 5-FU/LV for the adjuvant treatment of colon cancer is now considered standard care.

    Evidence (postoperative oxaliplatin):

  • In the randomized Multicenter International Study of Oxaliplatin/5-Fluorouracil/LV in the Adjuvant Treatment of Colon Cancer (MOSAIC) study, the toxic effects and efficacy of FOLFOX4 (a 2-hour infusion of 200 mg/m2 LV, followed by a bolus of 400 mg/m2 5-FU, and then a 22-hour infusion of 600 mg/m2 5-FU on 2 consecutive days every 14 days for 12 cycles, plus a 2-hour infusion of 85 mg/m2 oxaliplatin on day 1, given simultaneously with LV) were compared with the same 5-FU/LV regimen without oxaliplatin when administered for 6 months. Each arm of the trial included 1,123 patients.
  • Preliminary results of the study, with 37 months of follow-up, demonstrated a significant improvement in DFS at 3 years in favor of FOLFOX4 (77.8% vs. 72.9%; P = .01). When initially reported, there was no difference in OS.
  • [Level of evidence: 1iiDii]
  • Further follow-up at 6 years demonstrated that the OS for all patients (both stage II and stage III) entered into the study was not significantly different (OS, 78.5% FOLFOX4 vs. 76.0% 5-FU/LV group; HR, 0.84; 95% CI, 0.71–1.00).
  • On subset analysis, the 6-year OS in patients with stage III colon cancer was 72.9% in the patients who received FOLFOX4 and 68.9% in the patients who received 5-FU/LV (HR, 0.80; 95% CI, 0.65–0.97; P = .023).
  • [Level of evidence: 1iiA]
  • Patients treated with FOLFOX4 experienced more frequent toxic effects, consisting mainly of neutropenia (41% > grade 3) and reversible peripheral sensory neuropathy (12.4% > grade 3).
  • The results of the completed NSABP-C-07 study confirmed and extended the results of the MOSAIC trial.
  • In NSABP C-07, 2,492 patients with stage II or III colon or rectal cancer were randomly assigned to receive either FLOX (2-hour IV infusion of 85 mg/m2 oxaliplatin on days 1, 15, and 29 of each 8-week treatment cycle, followed by a 2-hour IV infusion of 500 mg/m2 LV plus bolus 500 mg/m2 5-FU 1 hour after the start of the LV infusion on days 1, 8, 15, 22, 29, and 36, followed by a 2-week rest period, for a total of three cycles [24 weeks]) or the same chemotherapy without oxaliplatin (Roswell Park regimen).
  • The 3- and 4-year DFS rates were 71.8% and 67% for the Roswell Park regimen and 76.1% and 73.2% for FLOX, respectively.
  • The HR was 0.80 (95% CI, 0.69–0.93), a 20% risk reduction in favor of FLOX (P < .004).
  • It is unclear whether the results of these colon cancer trials can be applied to the management of patients with rectal cancer. There are no randomized phase III studies to support the routine practice of administering FOLFOX as adjuvant therapy to patients with rectal cancer.

    Primary chemoradiation therapy followed by intensive surveillance for complete clinical responders

    Since the advent of preoperative chemoradiation therapy in rectal cancer, the standard approach has been to recommend definitive surgical resection by either abdominoperineal resection or laparoscopic-assisted resection. In most series, after long-course chemoradiation therapy, 10% to 20% of patients will have a complete clinical response in which there is no sign of persistent cancer by imaging, rectal exam, or direct visualization during sigmoidoscopy. It was a long-held belief that most patients who did not undergo surgery for personal or medical reasons would experience a local and/or systemic recurrence. However, it became clear that patients with a pathologic complete response to preoperative chemoradiation therapy followed by definitive surgery had a better DFS than did patients who did not have a pathologic clinical response.

    Several single-institution studies have challenged this standard of care by demonstrating that most patients with complete clinical response will be cured of rectal cancer without surgery and that many patients who experience a local recurrence can be treated with surgical resection (abdominoperineal resection or laparoscopic-assisted resection) at the time of their recurrence.

    These institutional series were hampered by their small size and inherent selection bias.

    Evidence (primary chemoradiation therapy followed by intensive surveillance for complete clinical responders):

  • Investigators in England performed the Oncological Outcomes after Clinical Complete Response in Patients with Rectal Cancer trial.
  • This was a propensity-score−matched cohort analysis. At a tertiary medical center in Manchester, 228 patients who chose watchful waiting from 2011 to 2013 after a complete clinical response to preoperative chemoradiation therapy were combined with 98 patients from a registry of three neighboring medical centers who chose watchful waiting after chemoradiation therapy beginning in 2005. A clinical complete response was considered in the absence of residual ulceration, stenosis, or mass within the rectum during digital rectal examination and endoscopic examination 8 weeks or more after completion of concurrent chemoradiation therapy. The only positive findings consistent with a complete clinical response during clinical or endoscopic examination were whitening of the mucosa and telangiectasia. Classification of complete clinical response required normal radiologic imaging of the mesorectum and pelvis. Complete clinical responders (n = 129) were compared with a cohort of patients treated similarly who underwent surgery for complete resection (n = 228). Compared with all patients who underwent surgery, patients who chose watch and wait had tumors with an earlier T stage and N stage and that were less likely to be poorly differentiated.
  • After a median follow-up of 33 months, 44 (34%) of the 129 patients who chose watchful waiting had a local recurrence, and 36 patients had a salvage resection.
  • In the paired-cohort analysis, the 3-year non-regrowth DFS for all patients was 83% (95% CI, 76–88): 88% (95% CI, 75–94) for the watch-and-wait group and 78% (95% CI, 63–87) for the surgical resection group (log-rank, P = .022).
  • The 3-year OS was 96% (95% CI, 88–98) in the watch-and-wait group versus 87% (95% CI, 77–93) for the surgical resection group (log-rank, P = .015).
  • The 3-year colostomy-free survival was 74% (95% CI, 64–82) for the watch-and-wait group and 47% (95% CI, 37–57; log-rank, P < .0001) for the surgical group.
  • Patients managed by watch and wait underwent a more intensive follow-up protocol consisting of outpatient digital rectal examination; MRI (every 4–6 months in the first 2 years); examination under anesthesia or endoscopy; computed tomography scan of the chest, abdomen, and pelvis; and at least two carcinoembryonic antigen measurements in the first 2 years. The optimal follow-up has not been determined.

    For patients who have a complete clinical response to therapy, it is reasonable to consider a watch-and-wait approach with intensive surveillance instead of immediate surgical resection.

    Current Clinical Trials

    Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

    ReferenceSection

  • Willett CG, Badizadegan K, Ancukiewicz M, et al.: Prognostic factors in stage T3N0 rectal cancer: do all patients require postoperative pelvic irradiation and chemotherapy? Dis Colon Rectum 42 (2): 167-73, 1999.
  • Sauer R, Becker H, Hohenberger W, et al.: Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 351 (17): 1731-40, 2004.
  • Sauer R, Liersch T, Merkel S, et al.: Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol 30 (16): 1926-33, 2012.
  • Roh MS, Colangelo LH, O'Connell MJ, et al.: Preoperative multimodality therapy improves disease-free survival in patients with carcinoma of the rectum: NSABP R-03. J Clin Oncol 27 (31): 5124-30, 2009.
  • Improved survival with preoperative radiotherapy in resectable rectal cancer. Swedish Rectal Cancer Trial. N Engl J Med 336 (14): 980-7, 1997.
  • Bujko K, Nowacki MP, Nasierowska-Guttmejer A, et al.: Long-term results of a randomized trial comparing preoperative short-course radiotherapy with preoperative conventionally fractionated chemoradiation for rectal cancer. Br J Surg 93 (10): 1215-23, 2006.
  • Ngan SY, Burmeister B, Fisher RJ, et al.: Randomized trial of short-course radiotherapy versus long-course chemoradiation comparing rates of local recurrence in patients with T3 rectal cancer: Trans-Tasman Radiation Oncology Group trial 01.04. J Clin Oncol 30 (31): 3827-33, 2012.
  • Sebag-Montefiore D, Stephens RJ, Steele R, et al.: Preoperative radiotherapy versus selective postoperative chemoradiotherapy in patients with rectal cancer (MRC CR07 and NCIC-CTG C016): a multicentre, randomised trial. Lancet 373 (9666): 811-20, 2009.
  • Thomas PR, Lindblad AS: Adjuvant postoperative radiotherapy and chemotherapy in rectal carcinoma: a review of the Gastrointestinal Tumor Study Group experience. Radiother Oncol 13 (4): 245-52, 1988.
  • Krook JE, Moertel CG, Gunderson LL, et al.: Effective surgical adjuvant therapy for high-risk rectal carcinoma. N Engl J Med 324 (11): 709-15, 1991.
  • Fisher B, Wolmark N, Rockette H, et al.: Postoperative adjuvant chemotherapy or radiation therapy for rectal cancer: results from NSABP protocol R-01. J Natl Cancer Inst 80 (1): 21-9, 1988.
  • NIH consensus conference. Adjuvant therapy for patients with colon and rectal cancer. JAMA 264 (11): 1444-50, 1990.
  • O'Connell MJ, Martenson JA, Wieand HS, et al.: Improving adjuvant therapy for rectal cancer by combining protracted-infusion fluorouracil with radiation therapy after curative surgery. N Engl J Med 331 (8): 502-7, 1994.
  • Smalley SR, Benedetti JK, Williamson SK, et al.: Phase III trial of fluorouracil-based chemotherapy regimens plus radiotherapy in postoperative adjuvant rectal cancer: GI INT 0144. J Clin Oncol 24 (22): 3542-7, 2006.
  • Tepper JE, O'Connell M, Niedzwiecki D, et al.: Adjuvant therapy in rectal cancer: analysis of stage, sex, and local control--final report of intergroup 0114. J Clin Oncol 20 (7): 1744-50, 2002.
  • Gunderson LL, Sargent DJ, Tepper JE, et al.: Impact of T and N stage and treatment on survival and relapse in adjuvant rectal cancer: a pooled analysis. J Clin Oncol 22 (10): 1785-96, 2004.
  • Cividalli A, Ceciarelli F, Livdi E, et al.: Radiosensitization by oxaliplatin in a mouse adenocarcinoma: influence of treatment schedule. Int J Radiat Oncol Biol Phys 52 (4): 1092-8, 2002.
  • Gérard JP, Chapet O, Nemoz C, et al.: Preoperative concurrent chemoradiotherapy in locally advanced rectal cancer with high-dose radiation and oxaliplatin-containing regimen: the Lyon R0-04 phase II trial. J Clin Oncol 21 (6): 1119-24, 2003.
  • Machiels JP, Duck L, Honhon B, et al.: Phase II study of preoperative oxaliplatin, capecitabine and external beam radiotherapy in patients with rectal cancer: the RadiOxCape study. Ann Oncol 16 (12): 1898-905, 2005.
  • Rödel C, Liersch T, Hermann RM, et al.: Multicenter phase II trial of chemoradiation with oxaliplatin for rectal cancer. J Clin Oncol 25 (1): 110-7, 2007.
  • Ryan DP, Niedzwiecki D, Hollis D, et al.: Phase I/II study of preoperative oxaliplatin, fluorouracil, and external-beam radiation therapy in patients with locally advanced rectal cancer: Cancer and Leukemia Group B 89901. J Clin Oncol 24 (16): 2557-62, 2006.
  • Valentini V, Coco C, Minsky BD, et al.: Randomized, multicenter, phase IIb study of preoperative chemoradiotherapy in T3 mid-distal rectal cancer: raltitrexed + oxaliplatin + radiotherapy versus cisplatin + 5-fluorouracil + radiotherapy. Int J Radiat Oncol Biol Phys 70 (2): 403-12, 2008.
  • García-Aguilar J, Hernandez de Anda E, Sirivongs P, et al.: A pathologic complete response to preoperative chemoradiation is associated with lower local recurrence and improved survival in rectal cancer patients treated by mesorectal excision. Dis Colon Rectum 46 (3): 298-304, 2003.
  • Guillem JG, Chessin DB, Cohen AM, et al.: Long-term oncologic outcome following preoperative combined modality therapy and total mesorectal excision of locally advanced rectal cancer. Ann Surg 241 (5): 829-36; discussion 836-8, 2005.
  • Rödel C, Martus P, Papadoupolos T, et al.: Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol 23 (34): 8688-96, 2005.
  • Gérard JP, Azria D, Gourgou-Bourgade S, et al.: Comparison of two neoadjuvant chemoradiotherapy regimens for locally advanced rectal cancer: results of the phase III trial ACCORD 12/0405-Prodige 2. J Clin Oncol 28 (10): 1638-44, 2010.
  • Aschele C, Cionini L, Lonardi S, et al.: Primary tumor response to preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer: pathologic results of the STAR-01 randomized phase III trial. J Clin Oncol 29 (20): 2773-80, 2011.
  • Roh MS, Yothers GA, O'Connell MJ, et al.: The impact of capecitabine and oxaliplatin in the preoperative multimodality treatment in patients with carcinoma of the rectum: NSABP R-04. [Abstract] J Clin Oncol 29 (Suppl 15): A-3503, 2011.
  • Rödel C, Liersch T, Becker H, et al.: Preoperative chemoradiotherapy and postoperative chemotherapy with fluorouracil and oxaliplatin versus fluorouracil alone in locally advanced rectal cancer: initial results of the German CAO/ARO/AIO-04 randomised phase 3 trial. Lancet Oncol 13 (7): 679-87, 2012.
  • André T, Boni C, Mounedji-Boudiaf L, et al.: Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 350 (23): 2343-51, 2004.
  • André T, Boni C, Navarro M, et al.: Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol 27 (19): 3109-16, 2009.
  • de Gramont A, Boni C, Navarro M, et al.: Oxaliplatin/5FU/LV in the adjuvant treatment of stage II and stage III colon cancer: efficacy results with a median follow-up of 4 years. [Abstract] J Clin Oncol 23 (Suppl 16): A-3501, 246s, 2005.
  • Maas M, Nelemans PJ, Valentini V, et al.: Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol 11 (9): 835-44, 2010.
  • Maas M, Beets-Tan RG, Lambregts DM, et al.: Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol 29 (35): 4633-40, 2011.
  • Lambregts DM, Maas M, Bakers FC, et al.: Long-term follow-up features on rectal MRI during a wait-and-see approach after a clinical complete response in patients with rectal cancer treated with chemoradiotherapy. Dis Colon Rectum 54 (12): 1521-8, 2011.
  • Smith JD, Ruby JA, Goodman KA, et al.: Nonoperative management of rectal cancer with complete clinical response after neoadjuvant therapy. Ann Surg 256 (6): 965-72, 2012.
  • Dalton RS, Velineni R, Osborne ME, et al.: A single-centre experience of chemoradiotherapy for rectal cancer: is there potential for nonoperative management? Colorectal Dis 14 (5): 567-71, 2012.
  • Renehan AG, Malcomson L, Emsley R, et al.: Watch-and-wait approach versus surgical resection after chemoradiotherapy for patients with rectal cancer (the OnCoRe project): a propensity-score matched cohort analysis. Lancet Oncol 17 (2): 174-83, 2016.
  • 直肠癌治疗(PDQ®)

    临床IV期和复发性直肠癌的治疗

    制定进展期或复发性直肠癌治疗决策的基础是肿瘤部位

    转移性和复发性直肠癌

    临床IV期和复发性直肠癌的标准治疗包括:

  • 手术联合/不联合化疗或放疗
  • 一线化疗联合靶向治疗
  • 二线化疗
  • 姑息治疗
  • 手术联合/不联合化疗或放疗

    对于局部复发、仅肝或仅肺转移性的患者,如果可行的话,手术切除是唯一的潜在治愈方法

    单纯肺转移或者仅有肝肺转移的患者也可以考虑手术切除,严格选择手术适应症可使得病人有望获得5年生存。

    与肿瘤复发相关的肾积水往往意味着无法获得手术根治

    局部复发的直肠癌可采用手术切除,特别既往手术史较少的患者。已行治愈性切除术的单纯局部肿瘤复发的患者,应采取积极的局部治疗,再次行低位前切除、结肠肛管吻合术、经腹会阴联合切除术、后盆腔或全盆腔清扫术,可获得长期无疾病生存收益。

    诱导放化疗用于局部晚期盆腔复发(盆腔侧壁、骶骨和/或邻近器官受累)且既往未行放疗的患者,或能提高手术可切除率和保肛率。

    术中放射治疗在接受过外照射治疗的患者中可改善局部复发患者的局部控制率,并发症率也在可接受范围。

    一线化疗联合靶向治疗

    下面将介绍一些美国FDA批准的用于治疗转移性结直肠癌的临床药物,可单药使用,也可联合应用,包括:

  • 5-FU
  • 伊立替康
  • 奥沙利铂
  • 卡培他滨
  • 贝伐珠单抗
  • FOLFOXIRI(伊立替康、奥沙利铂、亚叶酸钙、5-FU)
  • 西妥昔单抗
  • 阿柏西普
  • 雷莫芦单抗
  • 帕尼单抗
  • 抗表皮生长因子受体抗体(EGFR)与抗血管内皮生长因子(VEGF)抗体联合一线化疗。
  • 瑞戈非尼
  • TAS-102.
  • 派姆单抗
  • 5-FU

    在其他有效的化疗药上市前,5-FU是唯一一个有效的化疗药物,对局部晚期、不可手术切除、或转移性患者具有一定作用,并能延长患者的疾病进展时间(TTP)

    与支持治疗相比,还能改善患者的生存期和生活质量。

    多项临床试验对各种5-FU/LV方案(不同剂量和用药方式)的疗效和不良反应进行分析,结果显示在12个月内,中位生存期无明显差异。

    伊立替康和奥沙利铂

    有3项针对转移性结直肠癌患者的随机研究结果显示,伊立替康或奥沙利铂联合5-FU/LV应用可提高临床缓解率,改善无进展生存期和总体生存期

    循证依据(伊立替康vs.奥沙利铂)

  • 一项组间试验(NCCTG-N9741 [NCT00003594])将伊立替康/5-FU/LV (IFL) 与奥沙利铂LV/5-FU (FOLFOX-4)作为转移性结直肠癌的一线治疗方案进行对比研究。
  • [循证依据等级:1iiA]
  • FOLFOX-4患者PFS和OS均优于IFL组。IFL组和FOLFOX-4组患者的中位PFS分别为6.9个月和8.7个月(P=0.014;HR 0.74;95% CI,0.61-0.89)。两组的总体生存期分别为15.0个月和19.5个月(P=0.001; HR,0.66;95% CI,0.54–0.82)。
  • 随后,两项试验对FOLFOX和FOLFIRI进行对比研究。两组患者如疾病出现进展,均可以互为一线治疗方案。
  • [循证依据等级:1iiDii]
  • 两项研究的治疗组的PFS和OS相当
  • 静脉推注、输注,或卡培他滨联合-伊立替康-塞来昔布(BICC-C [NCT00094965)试验,研究了数种伊立替康为基础方案在不可切除的转移性结直肠癌中的应用,包括FOLFIRI,伊立替康联合静推5-FU/LV(mIFL)及卡培他滨/伊立替康(CAPIRI)。
  • 该研究随机分配430例患者。由于进度过慢,该研究提早被关闭。
  • FOLFIRI治疗组患者的PFS高于mIFL组(7.6 个月比 5.9个月,P=0.004) 和CAPIRI组 (7.6个月 比5.8 个月,P=0.015)。
  • CAPIRI 组的3级及以上的不良反应最多,如恶心、呕吐、腹泻、脱水、手足综合征。
  • 自这些研究发表以来,FOLFOX或FOLFIRI被认为可用于转移性结直肠癌患者的一线治疗。然而,当使用伊立替康作为转移性结直肠癌的一线治疗方案时,FOLFIRI是首选方案。

    [循证依据等级:1iiDiii]

    卡培他滨

    在多药联合化疗前,有两项随机试验提示卡培他滨的临床疗效等同于Mayo方案中的5-FU/LV方案。

    [循证依据等级:1iiA]

    随机III期临床试验结果已提出可采用卡培他滨替代静脉输注5-FU。两项III期临床试验对 5-FU/奥沙利铂 (FUOX) 与卡培他滨/奥沙利铂 (CAPOX)进行对照研究。

    循证依据(伊立替康vs.奥沙利铂)

  • AIO结直肠研究小组将474例患者随机分为 5-FU/LV/奥沙利铂 (FUFOX)组和CAPOX组。
  • CAPOX组和FUFOX组的中位无进展生存期分别为7.1个月和8.0个月(HR,1.17;95% CI,0.96–1.43;P=0.117)。
  • 西班牙协作工作组随机将348例患者分为CAPOX组和FUOX组。
  • [循证依据等级:1iiDiii]
  • CAPOX组和FUOX组的疾病无进展期分别为8.9个月和9.5个月(P=0.153)。符合预设的非劣效性范围。
  • 当采用奥沙利铂为基础的方案作为转移性结直肠癌的一线治疗时,CAPOX方案并不劣于FUOX方案。

    贝伐珠单抗

    可在FOLFIRI或FOLFOX方案中联用贝伐珠单抗,用于转移性结直肠癌的一线治疗。

    循证依据(贝伐珠单抗):

  • 贝伐单抗获得批准后,对BICC-C试验进行修改,另外117名患者被随机分配接受FOLFIRI/贝伐单抗或mIFL/贝伐单抗。
  • 虽然无进展生存期作为主要终点未见明显差异,FOLFIRI/贝伐珠单抗组患者的总体生存期明显得到改善(尚未达到主要终点的中位随诊时间22.6个月比19.2个月,P=0.007)
  • 在Hurwitz研究中,先前未经治疗的转移性结直肠癌患者被随机分为IFL或IFL/贝伐单抗。
  • 结果显示IFL/贝伐珠单抗联合治疗组的PFS优于IFL/安慰剂组(10.6个月比6.2个月,疾病进展HR,0.54;P<0.001)。IFL/贝伐珠单抗联合治疗组总体生存期优于IFL/安慰剂组(20.3个月比15.6个月,死亡率HR, 0.66;P<0.001).
  • 尽管直接数据不足,但在标准治疗中,根据NCCTG-N9741试验结果,贝伐珠单抗联合FOLFOX的方案联应作为标准一线治疗方法
  • 随后,在一项随机的III期研究中,采用2×2析因设计将未经治疗的临床IV期结直肠癌患者随机分配CAPOX和FOLFOX-4组。然后再将贝伐单抗和安慰剂对照研究。PFS是主要终点。
  • [循证依据等级:1iiDiii]
  • 本项共纳入1401例患者。贝伐珠单抗治疗组患者的中位PFS为9.4个月,安慰剂组患者为8.0个月(HR,0.83;97.5% CI,0.72–0.95;P=0.0023)。
  • 贝伐珠单抗治疗组患者的中位OS为21.3个月,安慰剂组患者为19.9个月(HR,0.89;97.5% CI,0.76–1.03;P=0.077)。
  • 含CAPOX方案的治疗组的中位PFS(意向性分析)为8.0个月,FOLFOX-4组为8.5个月(HR,1.04;97.5% CI,0.93-1.16),97.5%CI的上限值低于预设非劣效性的界限值1.23。
  • 贝伐单抗对OS的影响可能比最初的Hurwitz研究中看到的要小。
  • 美国东部肿瘤协作组织将5-FU/亚叶酸钙和伊立替康治疗后出现病情进展的患者随机给予FOLFOX或FOLFOX/贝伐珠单抗治疗。
  • FOLFOX/贝伐珠单抗组较FOLFOX组的无进展生存期(分别为7.43个月和4.7个月,HR,0.61;P<0.0001)和总体生存期(分别为12.9个月和10.8个月,HR,0.75;P=0.0011)明显改善,且有统计学意义。
  • [循证依据等级:1iiA]
  • FOLFOXIRI

    循证依据(FOLFOXIRI)

  • 一项随机III期临床试验,纳入508例未经治的转移性结直肠癌患者,将FOLFOXIRI联合贝伐珠单抗与FOLFIRI联合贝伐珠单抗进行对比研究。
  • FOLFOXIRI组的中位PFS为12.1个月,FOLFIRI组为9.7个月(进展HR,0.75;95%CI,0.62–0.90;P=0.003)。两组的OS无显著性差异(31.0个月比25.8个月;HR死亡率,0.79;95%CI,0.63-1.00;P=0.054)。
  • [循证依据等级:1iiDiii]
  • 3级和4级不良反应更多见于FOLFOXIRI治疗组,包括中性粒细胞减少症、口腔炎和周围神经病变。
  • 西妥昔单抗

    西妥昔单抗是一种抗EGFR的部分人源性单克隆抗体。当西妥昔单抗加入含贝伐单抗的多药化疗方案时,KRAS突变型患者的临床预后可能更差。

    循证依据(西妥昔单抗)

  • 一项随机的II期研究对已采用伊立替康方案治疗疾病进展的患者进行研究,将患者随机分为西妥昔单抗单药组或伊立替康/西妥昔单抗联合治疗组。
  • [循证依据等级:3iiiDiv]
  • 西妥昔单抗单药治疗组患者的中位疾病进展期为1.5个月,而伊立替康/西妥昔单抗联合治疗组为4.2个月。
  • Crystal研究(EMR 62202-013[NCT 00154102])随机将1198例临床IV期结直肠癌患者分为FOLFIRI组和FOLFIRI/西妥昔单抗联合治疗组。
  • [循证依据等级:1iiDii]
  • FOLFIRI联用西妥昔单抗可改善患者的PFS(HR,0.85;95%CI,0.72–0.99;log-rank检验 P=.048),但对患者的总体生存期无影响。
  • 对转移性结直肠癌患者的回顾性研究表明,抗EGFR抗体治疗仅对野生型KRAS(如KRAS基因第12或13密码子缺乏激活突变)的患者有效。
  • 在Crystal研究中,对不同KRAS状态的作用进行了亚组分析。KRAS突变状态与肿瘤治疗反应之间存在显著的交互作用(P=0.03),而对PFS无影响(P=0.07)。在KRAS野生型肿瘤患者中,FOLFIRI/西妥昔单抗联合或更具有临床意义(HR,0.68;95%CI,0.50-0.94)。
  • 在一项随机试验中,转移性结直肠癌患者采用卡培他滨/奥沙利铂/贝伐单抗联合或不联合西妥昔单抗治疗。
  • [循证依据等级:1iiDii]
  • 西妥昔单抗联合组的中位PFS为9.4个月,未采用西妥昔单抗治疗组的中位PFS为10.7个月(P=.01)。
  • 在西妥昔治疗的亚组分析中,KRAS基因突变的肿瘤患者与KRAS野生型肿瘤患者相比,PFS显著降低(8.1个月对10.5个月;P=0.04)。
  • 与未采用西妥昔单抗治疗的KRAS突变患者相比,采用西妥昔单抗治疗的突变型KRAS肿瘤患者的无进展生存期更短(8.1个月比12.5个月;P=0.003),总体生存期也显著缩短(17.2个月比24.9个月;P=0.03)。
  • 医学研究委员会(MRC)(COIN[NCT00182715]试验)尝试探讨在氟尿嘧啶和奥沙利铂联合化疗的一线治疗中加用西妥昔单抗治疗KRAS野生型肿瘤,能否有临床意义。
  • 此外,MRC还对间歇化疗与持续化疗的疗效进行评估。将1630例患者随机分成三个治疗组:
  • A组:氟尿嘧啶/奥沙利铂
  • B组:氟尿嘧啶/奥沙利铂/西妥昔单抗
  • C组:氟尿嘧啶/奥沙利铂交替用药
  • 分别对A和B组以及和A和C组进行对比分析,并将研究成果单独发表。

  • 在KRAS野生型肿瘤患者中(A组,n=367;B组,n=362),两组总体生存期无差异(中位生存期,对照组17.9个月[IQR为10.3-29.2],西妥昔单抗组为17.0个月[IQR为9.4-30.1];HR为1.04;95%CI0.87-1.23;P=0.67)。同样,对两组患者PFS无差异(对照组8.6个月[IQR,5.0-12.5],西妥昔单抗组8.6个月[IQR,5.1-13.8];HR,0.96;95%CI,0.82-1.12;P=0.60)。
  • [循证依据等级:1iiA]
  • 联合西妥昔单抗没有益处的原因尚不清楚。亚组分析表明,应用卡培他滨会导致预后变差,西妥昔单抗治疗的患者较少使用二线治疗。
  • 持续治疗组(A组)和间歇治疗组(C组)两组患者间未见差异。
  • 意向治疗人群(两组均为815)的中位生存期为A组15.8个月(IQR,9.4-26.1),C组14.4个月(IQR,8.0-24.7)(HR,1.084;80%可信区间,1.008-1.165)。
  • 在符合治疗方案的患者中,包括治疗12周无疾病进展的患者,以及随机分配继续治疗或处于化疗间歇的患者(A组,n=467;C组,n=511),A组的中位生存期为19.6个月(IQR,13.0-28.1),C组为18.0个月(IQR,12.1-29.3)(HR,1.087;95%CI,0.986-1.198)。
  • 在这两个分析中,HR可信区间的上限都超过预设的非劣效性阈值。间歇化疗被认为不具有非劣效性,其在患者预后方面临床意义不大。
  • 阿柏西普

    阿柏西普是一种新型抗VEGF分子制剂,常被用于转移性结直肠癌的二线治疗。

    循证依据(阿柏西普)

  • 在一项试验中,将1226名患者随机分为两组,一组阿柏西普(4mg/kg,静脉滴注),另一组安慰剂,每2周联合FOLFIRI化疗。
  • [循证依据等级:1A]
  • 采用阿柏西普/FOLFIRI联合治疗患者的总体生存率显著高于安慰剂/FOLFIRI组,联合治疗组的中位生存期为13.50个月,安慰剂组为12.06个月(HR,0.817;95.34%CI,0.713–0.937;P=.0032)。
  • 采样阿柏西普/FOLFIRI联合治疗的患者无进展生存率明显升高,中位PFS为6.90个月,安慰剂组为4.67个月(HR,0.758;95%CI,0.661-0.869;P<0.0001)。
  • 根据这些结果,阿柏西普/FOLFIRI联合用药可被作为二线治疗方案,用于FOLFOX方案经治的患者。在二线治疗中,是继续贝伐单抗,还是将阿柏西普作为初始二线治疗,尚未有临床对此进行研究,缺乏相关数据。
  • 雷莫芦单抗

    雷莫芦单抗是一种与血管内皮生长因子受体2结合的完全人源化单克隆抗体。

    循证依据(雷莫芦单抗)

  • 在随机的非盲性III期RAISE(NCT 01183780)研究中,将1072例经一线化疗进展的临床IV期结直肠癌患者进行随机分组:FOLFIRI单方案治疗组或FOLFIRI/雷莫芦单抗联合治疗组。
  • [循证依据等级:1iiA]
  • 与FOLFIRI单方案治疗组相比,FOLFIRI/雷莫芦单抗联合治疗组患者的中位总体生存期(13.3个月比11.7个月;HR,0.84;P=0.0219)和PFS(5.7个月比4.5个月;HR,0.793;P=0.0005)具有明显优势。
  • 3级不良反应在FOLFIRI/雷莫芦单抗联合治疗组更常见,包括3级中性粒细胞减少症。
  • 根据这些数据,FOLFIRI/雷莫芦单抗可作为二线治疗方案,用于FOLFOX/贝伐单抗经治患者。在二线治疗中,是继续贝伐单抗,还是将雷莫芦单抗作为初始二线治疗,尚未得到临床试验验证。
  • 帕尼单抗

    帕尼单抗是一种抗EGFR的完全人源化抗体。FDA批准帕尼单抗用于化疗无效的转移性结直肠癌。

    在临床试验中,帕尼单抗作为单药或联合治疗均具有一定的临床疗效。该药对患者的PFS和OS影响与西妥昔单抗相似。二者或有一致的药物类效应。

    循证依据(帕尼单抗):

  • 在III期临床试验中,随机将化疗耐受的结直肠癌患者分为帕尼单抗组和最佳支持治疗组。
  • [循证依据等级:1iiDiii]
  • 帕尼单抗治疗组患者的无进展生存期得到明显改善(8周比7.3周;HR,0.54;95%可信区间,0.44-0.66;P<0.0001)。
  • 两组患者的总体生存期无差异,这或与76%最佳治疗组患者采用帕尼单抗治疗有关。
  • 帕尼单抗联合化疗用于转移性结直肠癌进行疗效评估的临床试验中[NCT00364013],将1183例患者随机分配,FOLFOX-4单方案治疗和FOLFOX-4/帕尼单抗联合治疗分别作为转移性结直肠癌的一线治疗。该研究不断修正,扩大样本量,对KRAS野生型和突变型肿瘤患者进行了区分。
  • [循证依据等级:1iiDiii]
  • 对于KRAS野生型肿瘤患者,与FOLFOX-4单方案治疗组相比,帕尼单抗/FOLFOX-4联合治疗组患者的PFS显著延长,具有统计学意义(HR,0.80;95%CI,0.66–0.97;log-rank检验 P=.02)。
  • 帕尼单抗/FOLFOX-4联合治疗组的中位无进展生存期为9.6个月(95% CI,9.2-11.1个月),FOLFOX-4单方案治疗组为8.0个月(95%CI,7.5-9.3个月)。两组患者的总体生存期无显著差异(HR,0.83;95% CI,0.67–1.02;P=.072)。
  • 对于突变型KRAS肿瘤患者,联合帕尼单抗会对患者的无进展生存期产生不良影响(HR,1.29;95%CI,1.04-1.62;log-rank检验 P=.002)。
  • 帕尼单抗/FOLFOX-4联合治疗组和FOLFOX-4单方案治疗组的中位无进展生存期分别为7.3个月(95% CI,6.3-8.0个月)和8.8个月(95% CI,7.7-9.4个月)。
  • 随后,一项回顾性分析对野生型KRAS外显子2进行检测,以区分KRAS突变和BRAF突变。
  • 循证依据等级:3iiiA
  • 有620名患者最初诊断时无KRAS外显子2突变,随后发现108例(17%)RAS突变,53例(8%)BRAF突变。有回顾性分析报道,与FOLFOX-4单方案治疗组相比,FOLFOX-4/帕尼单抗联合治疗无RAS或BRAF突变患者的无进展生存期(10.8个月比9.2个月,P=0.002)和总体生存期(28.3个月比20.9个月,P=0.02)具有明显优势。
  • 同样,在未发现KRAS突变的转移性结直肠癌患者中,与单独FOLFOX/贝伐珠单抗方案相比,加用帕尼单抗治疗组的无进展生存期(11.4个月vs.10.0个月,HR,1.27;95%CI 1.06–1.52)和不良反应均劣于对照组。
  • [循证依据等级:1iiDiii]
  • 在另一项研究(NCT00339183)中,将经氟尿嘧啶治疗的转移性结直肠癌患者随机分为两组,一组给予FOLFIRI单方案治疗,另一组行FOLFIRI/帕尼单抗联合治疗。
  • [循证依据等级:1iiDiii]
  • 在随后分析中,KRAS野生型肿瘤患者具有显著的无进展生存期优势(HR,0.73;95%CI,0.59–0.90; log-rank检验 P=.004)。
  • 帕尼单抗/FOLFIRI联合治疗组患者的中位无进展生存期为5.9个月(95%CI,5.5-6.7个月),FOLFIRI单方案组为3.9个月(95%CI,3.7-5.3个月)。
  • 两组总体生存期未见明显差异。FOLFIRI/帕尼单抗组的中位总体生存期为14.5个月,FOLFIRI单方案治疗组12.5个月。
  • 两组患者的总体生存期无显著差异。突变型KRAS肿瘤患者不会从帕尼单抗治疗中获益。
  • 抗EGFR抗体与抗VEGF抗体联合一线化疗的对比研究

    在临床IV期结直肠癌患者的治疗中,KRAS野生型患者是否应采用抗EGFR抗体联合化疗或抗VEGF抗体联合化疗,目前尚不清楚。有两项临床试验尝试对此进行研究。

    循证依据(抗EGFR抗体与抗VEGF抗体联合一线化疗的对比研究):

  • FIRE-3[NCT00433927]研究将592例KRAS外显子2野生型未经治的患者进行随机分配,一组给予FOLFIRI/西妥昔单抗(297例),另一组给予FOLFIRI/贝伐珠单抗治疗(295例)。研究的主要终点是客观缓解率
  • [循证依据等级:1iiA]
  • 两组间的客观缓解率无显著差异。FOLFIRI/西妥昔单抗治疗组的客观缓解率为62.0%(95%CI 56.2-67.5)FOLFIRI/贝伐珠单抗治疗组为58.0%(95%CI 52.1-63.7;OR 1.18;95%CI 0.85-1.64;P=0.18)。
  • 西妥昔单抗组的中位无进展生存期为10.0个月(95%CI,8.8-10.8),贝伐单抗组为10.3个月(95%CI,9.8-11.3)(HR,1.06;95%CI,0.88-1.26;P=0.55)。
  • 西妥昔单抗组的中位总体生存期为28.7个月(95% CI,24.0-36.6),贝伐单抗组为25.0个月(22.7-27.6)(HR,0.77;95%CI,0.62-0.96;P=0.017)。
  • 随后对RAS野生型患者进行分析(KRAS和NRAS基因突变热点的测序,包括外显子2密码子12和13;外显子3密码子59和61;外显子4密码子117和146),西妥昔单抗组的中位总体生存期为33.1个月(95%CI,24.5-39.4),贝伐单抗组为25.0个月(95%CI,23.0-28.1)(HR,0.70;95%CI,0.54–0.90;P=.0059)。
  • 值得注意的是,贝伐单抗组52%患者随后采用了西妥昔单抗或帕尼单抗治疗。
  • 癌症和白血病B组组间研究80405[NCT00265850]发布在2014年ASCO会议。该研究纳入2334例KRAS野生型未治的患者,将患者随机分为化疗(FOLFOX或FOLFIRI)联合贝伐单抗治疗组或化疗/西妥昔单抗治疗组。总体生存期是主要终点。
  • [循证依据等级:1iiDiii]
  • 贝伐单抗组和西妥昔单抗组患者的总体生存期无统计学差异。化疗/贝伐单抗组的总体生存期为29.04 [25.66–31.21]个月,化疗/西妥昔单抗为29.93 [27.56–31.21]个月(HR,0.92[0.78,1.09];P=0.34)。
  • 根据这两项研究,化疗联合贝伐单抗或西妥昔单抗用于KRAS野生型的转移性结直肠癌患者无明显差异。然而,在KRAS野生型患者的临床治疗中,联用抗EGFR抗体可有效改善患者的总体生存期。

    瑞戈非尼

    瑞戈非尼是多种酪氨酸激酶途径的抑制剂,包括血管内皮生长因子。2012年9月,FDA批准瑞戈非尼用于既往治疗失败的癌症患者。

    循证依据(瑞戈非尼):

  • 有一项单中心760例经治的转移性结直肠癌患者的临床研究对瑞戈非尼的安全性和有效性进行了探索。按照2:1的比例,将患者随机分为瑞戈非尼或安慰剂联合最佳支持治疗组。
  • 瑞戈非尼治疗组患者的总体生存期得到明显改善。瑞戈非尼组为6.4个月,安慰剂组为5.0个月(HR为0.77;95% CI0.64-0.94;P=0.0052)。
  • TAS-102(曲氟尿苷替匹嘧啶)

    TAS-102(Lonsurf)是一种口服的胸腺嘧啶核苷类似物、曲氟尿苷、胸腺嘧啶磷酸化酶抑制剂、盐酸替吡拉西的复合制剂。曲氟尿苷,以三磷酸形式抑制胸苷酸合成酶,具有抗肿瘤作用。盐酸替吡拉西是胸苷磷酸化酶的有效抑制剂,能有效降解曲氟尿苷。曲氟尿苷和替吡拉西结合可升高血浆中曲氟尿苷水平。

    循证依据(曲氟尿苷替匹嘧啶):

  • 一项 III期双盲性研究(RECOURSE[NCT 01607957])随机分配了800例临床IV期已对两种治疗耐受的结直肠癌患者。患者必须既往采取过5-FU、奥沙利铂、伊立替康、贝伐单抗治疗。如果患者为KRAS野生型,则必须接受过西妥昔单抗或帕尼妥单抗治疗。按2:1比例将患者随机分配,一组采用最佳支持治疗联合TAS-102(n=534),另一组最佳支持治疗联合安慰剂(n=266)。患者的中位年龄为63岁,大多数患者(60%-63%)曾接受过四种或四种以上的治疗方案。所有患者既往均曾采用过氟尿嘧啶、伊立替康、奥沙利铂和贝伐单抗治疗。另外,其中有52%患者采用过EGFR抑制剂治疗。约20%患者曾接受瑞戈非尼治疗。
  • [循证依据等级:1iiA]
  • TAS-102,用药剂量为35mg/m2,每日两次,每次5天,休息2天,连用2周,然后休息14天。
  • 研究主要终点是总体生存期。TAS-102治疗组转移性结直肠癌患者的中位总体生存期为7.1个月,安慰剂组为5.3个月(HR,0.68;P<0.0001)。
  • TAS-102组中位无进展生存期为2个月,安慰剂组为1.7个月(HR,0.48;P<0.0001)。
  • 研究的次要终点是无进展生存期、总有效率和肿瘤控制率。
  • TAS-102治疗组的总有效率为1.6%,其中1例完全缓解,1例部分缓解。安慰剂的总有效率为0.4%(P=0.29)。
  • 基于RECOURSE临床试验结果,FDA批准TAS-102用于治疗转移性结直肠癌。

    派姆单抗

    约4%临床IV期结直肠癌患者的肿瘤有微卫星不稳定,这也称为高度微卫星不稳定(MSI-H)。MSI-H表型与MLH1、MSH2、MSH6和PMS2基因的胚系缺陷有关,是遗传性非息肉样结直肠癌(HNPCC)或林奇综合征患者中常见的表型。由于上述某个基因在DNA甲基化后沉默,患者也出现MSI-H表型。可采用分子遗传学检测微卫星不稳定性,在肿瘤组织观察微卫星不稳定性,或者通过免疫组化检测错配修复蛋白的缺失。

    2017年5月,FDA批准派姆单抗,即程序性细胞死亡蛋白1(PD-1)抗体,用于治疗微卫星不稳定的肿瘤。

  • FDA批准该药的依据是149例MSI-H或DNA错配修复缺失患者的数据,这些患者来源于5项无对照组、多队列、多中心、单臂临床试验。其中90例结直肠癌,59例被诊断为其他癌症(14种癌症)。派姆单抗有两种用药方式,一种是每次200mg,每3周重复;另一种10mg/kg,每2周重复。持续治疗,直到出现不可耐受的不良反应或疾病进展。主要疗效观察指标为客观缓解率,由单盲独立中心的影像科医生根据实体瘤反应评价标准(RECIST)1.1和疗效持续时间进行评价。
  • 客观缓解率为39.6%(95% CI,31.7–47.9)。
  • 78%患者采用派姆单抗治疗,临床疗效可持续6个月甚或更长。完全缓解11例,部分缓解48例。
  • 虽然肿瘤类型不同,但客观缓解率相近。结直肠癌为36%,其他类型肿瘤(14种)为46%。
  • 二线化疗

    伊立替康作为二线化疗用于5-FU/LV一线治疗的患者。结果显示,与其他静脉输注5-FU或支持治疗相比,伊立替康的二线化疗能改善患者的总体生存期。

    同样,还有一项III期临床试验将伊立替康和5-FU/LV经治后出现进展的患者随机给予静推和静脉输注5-FU/LV (LV5FU2)、奥沙利铂单药治疗、FOLFOX-4方案。FOLFOX-4组和LV5FU2组的中位疾病无进展期分别为4.6个月和2.7个月(log-rank检测,二项式 P<0.001)。

    [循证依据等级:1iiDiii]

    姑息治疗

    姑息放疗

    化疗

    放化疗

    姑息性、内镜下置入支架有助于缓解梗阻。

    肝转移的治疗

    约15%-25%结直肠癌患者在确诊时,就已出现肝转移,另有25%-50%患者在原发肿瘤切除术后,会发展为异时性肝转移。

    仅有少数肝转移患者具有手术机会。不断改良的肿瘤消融术和局部化疗和全身化疗可作为临床治疗手段,包括:

  • 手术。
  • 新辅助化疗。
  • 局部消融。
  • 辅助化疗。
  • 肝内动脉灌注化疗。
  • 手术

    肝转移可行手术切除,主要基于以下几点:

  • 病灶数目少。
  • 肝内病灶。
  • 未侵犯大血管。
  • 无/少有肝外病灶。
  • 足够的肝储备功能。
  • 包括美国中北部癌症治疗组(NCCTG-934653 [NCT00002575])在内的多项非随机的临床试验发现,具有手术可能的肝转移患者,如肿瘤完全切除,其5年生存率可达25%-40%。

    [循证依据等级:3iiiDiv] 不断改进的手术技术和术前影像检查可有效筛选手术患者。此外,多项研究显示多药联合化疗用于曾被认为不可手术的孤立的肝转移患者,部分患者可在化疗后行手术治疗。

    新辅助化疗

    曾被认定为不可手术切除的肝转移患者,如果临床化疗有效,则仍有手术机会。这些患者的5年生存率与可手术切除的患者无差异。

    局部消融

    射频消融作为一种安全的治疗手段(术后并发症发生率2%,死亡率<1%),病人也会获得长期的生存获益

    射频消融和和冷冻消融可用于不可手术切除及不宜行肝切除的患者。

    辅助化疗

    辅助化疗在肝转移潜在治愈性手术切除后的作用尚不清楚。

    循证依据(辅助化疗)

  • 有研究对氟脲苷和地塞米松肝动脉灌注联合5-FU/LV的全身化疗与仅5-FU/LV全身化疗进行对比。结果显示,联合治疗患者2年无进展生存率和总体生存率优于仅全身化疗。两组患者的2年无进展生存率分别为57%和42%(P=0.07)。总体生存率分别为86%和72%(P=0.03)。两组的中位生存期未见统计学差异。
  • [循证依据等级:1iiA]
  • 联合治疗组的中位生存期为72.2个月,单方案化疗组为59.3个月。
  • 还有一项研究将109例结直癌伴1-3枚淋巴结转移的患者在术前随机分配,一组未予治疗,另一组术后行肝内动脉灌注化疗联合5-FU全身化疗。
  • 在这些随机病例中,有27%病例在手术时被认为不符合手术要求,只有75例患者可进行复发和生存期评估。
  • 虽然肝癌复发风险降低,但两组患者的中位或4年生存期并无显著差异。
  • 需要进一步的研究来评估这种治疗方法,并确定是否有更有效的联合化疗方案,仅行全身化疗便可获得与肝动脉灌注化疗联合全身化疗相似的结果。

    肝切除术后的肝内动脉灌注化疗

    肝转移患者采用氟脲苷的肝内动脉灌注化疗具有较好的临床疗效。与全身化疗相比,未观察到持续的生存期延长。

    针对局部化疗的临床疗效的,一直存有诸多争议。但这也是大规模多中心III期临床试验(Leuk-9481)(NCT00002716)肝动脉灌注与全身化疗的基础。采用肝内动脉灌注化疗联合肝区放疗,特别是利用转移灶的局灶型放疗,正处于临床评估阶段。

    多项研究显示肝内动脉灌注化疗可增加局部不良反应,如肝功能异常和致命的胆道硬化症。

    目前的临床试验

    采用我们的临床试验搜索引擎,可查询正招募患者的NCI支持的癌症临床试验。搜索可按试验地点、治疗类型、药物名称及其他标准进行设置。还有一些临床试验相关的基本信息。

    参考文献

  • Wanebo HJ, Koness RJ, Vezeridis MP, et al.: Pelvic resection of recurrent rectal cancer. Ann Surg 220 (4): 586-95; discussion 595-7, 1994.
  • Girard P, Ducreux M, Baldeyrou P, et al.: Surgery for lung metastases from colorectal cancer: analysis of prognostic factors. J Clin Oncol 14 (7): 2047-53, 1996.
  • McAfee MK, Allen MS, Trastek VF, et al.: Colorectal lung metastases: results of surgical excision. Ann Thorac Surg 53 (5): 780-5; discussion 785-6, 1992.
  • Headrick JR, Miller DL, Nagorney DM, et al.: Surgical treatment of hepatic and pulmonary metastases from colon cancer. Ann Thorac Surg 71 (3): 975-9; discussion 979-80, 2001.
  • Tepper JE, O'Connell M, Donna H, et al.: Analysis of surgical salvage after failure of primary therapy in rectal cancer: results from INT 0114. [Abstract] Proceedings of the American Society of Clinical Oncology 21: A-507, 2002.
  • Rodriguez-Bigas MA, Herrera L, Petrelli NJ: Surgery for recurrent rectal adenocarcinoma in the presence of hydronephrosis. Am J Surg 164 (1): 18-21, 1992.
  • Ogunbiyi OA, McKenna K, Birnbaum EH, et al.: Aggressive surgical management of recurrent rectal cancer--is it worthwhile? Dis Colon Rectum 40 (2): 150-5, 1997.
  • Vermaas M, Ferenschild FT, Verhoef C, et al.: Total pelvic exenteration for primary locally advanced and locally recurrent rectal cancer. Eur J Surg Oncol 33 (4): 452-8, 2007.
  • Lowy AM, Rich TA, Skibber JM, et al.: Preoperative infusional chemoradiation, selective intraoperative radiation, and resection for locally advanced pelvic recurrence of colorectal adenocarcinoma. Ann Surg 223 (2): 177-85, 1996.
  • Valentini V, Morganti AG, De Franco A, et al.: Chemoradiation with or without intraoperative radiation therapy in patients with locally recurrent rectal carcinoma: prognostic factors and long term outcome. Cancer 86 (12): 2612-24, 1999.
  • Haddock MG, Gunderson LL, Nelson H, et al.: Intraoperative irradiation for locally recurrent colorectal cancer in previously irradiated patients. Int J Radiat Oncol Biol Phys 49 (5): 1267-74, 2001.
  • Petrelli N, Herrera L, Rustum Y, et al.: A prospective randomized trial of 5-fluorouracil versus 5-fluorouracil and high-dose leucovorin versus 5-fluorouracil and methotrexate in previously untreated patients with advanced colorectal carcinoma. J Clin Oncol 5 (10): 1559-65, 1987.
  • Petrelli N, Douglass HO, Herrera L, et al.: The modulation of fluorouracil with leucovorin in metastatic colorectal carcinoma: a prospective randomized phase III trial. Gastrointestinal Tumor Study Group. J Clin Oncol 7 (10): 1419-26, 1989.
  • Scheithauer W, Rosen H, Kornek GV, et al.: Randomised comparison of combination chemotherapy plus supportive care with supportive care alone in patients with metastatic colorectal cancer. BMJ 306 (6880): 752-5, 1993.
  • Expectancy or primary chemotherapy in patients with advanced asymptomatic colorectal cancer: a randomized trial. Nordic Gastrointestinal Tumor Adjuvant Therapy Group. J Clin Oncol 10 (6): 904-11, 1992.
  • Buyse M, Thirion P, Carlson RW, et al.: Relation between tumour response to first-line chemotherapy and survival in advanced colorectal cancer: a meta-analysis. Meta-Analysis Group in Cancer. Lancet 356 (9227): 373-8, 2000.
  • Leichman CG, Fleming TR, Muggia FM, et al.: Phase II study of fluorouracil and its modulation in advanced colorectal cancer: a Southwest Oncology Group study. J Clin Oncol 13 (6): 1303-11, 1995.
  • Saltz LB, Cox JV, Blanke C, et al.: Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N Engl J Med 343 (13): 905-14, 2000.
  • de Gramont A, Figer A, Seymour M, et al.: Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 18 (16): 2938-47, 2000.
  • Douillard JY, Cunningham D, Roth AD, et al.: Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 355 (9209): 1041-7, 2000.
  • Sanoff HK, Sargent DJ, Campbell ME, et al.: Five-year data and prognostic factor analysis of oxaliplatin and irinotecan combinations for advanced colorectal cancer: N9741. J Clin Oncol 26 (35): 5721-7, 2008.
  • Tournigand C, André T, Achille E, et al.: FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 22 (2): 229-37, 2004.
  • Colucci G, Gebbia V, Paoletti G, et al.: Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: a multicenter study of the Gruppo Oncologico Dell'Italia Meridionale. J Clin Oncol 23 (22): 4866-75, 2005.
  • Fuchs CS, Marshall J, Mitchell E, et al.: Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C Study. J Clin Oncol 25 (30): 4779-86, 2007.
  • Van Cutsem E, Twelves C, Cassidy J, et al.: Oral capecitabine compared with intravenous fluorouracil plus leucovorin in patients with metastatic colorectal cancer: results of a large phase III study. J Clin Oncol 19 (21): 4097-106, 2001.
  • Hoff PM, Ansari R, Batist G, et al.: Comparison of oral capecitabine versus intravenous fluorouracil plus leucovorin as first-line treatment in 605 patients with metastatic colorectal cancer: results of a randomized phase III study. J Clin Oncol 19 (8): 2282-92, 2001.
  • Díaz-Rubio E, Tabernero J, Gómez-España A, et al.: Phase III study of capecitabine plus oxaliplatin compared with continuous-infusion fluorouracil plus oxaliplatin as first-line therapy in metastatic colorectal cancer: final report of the Spanish Cooperative Group for the Treatment of Digestive Tumors Trial. J Clin Oncol 25 (27): 4224-30, 2007.
  • Porschen R, Arkenau HT, Kubicka S, et al.: Phase III study of capecitabine plus oxaliplatin compared with fluorouracil and leucovorin plus oxaliplatin in metastatic colorectal cancer: a final report of the AIO Colorectal Study Group. J Clin Oncol 25 (27): 4217-23, 2007.
  • Hurwitz H, Fehrenbacher L, Novotny W, et al.: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350 (23): 2335-42, 2004.
  • Saltz LB, Clarke S, Díaz-Rubio E, et al.: Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 26 (12): 2013-9, 2008.
  • Cassidy J, Clarke S, Díaz-Rubio E, et al.: Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer. J Clin Oncol 26 (12): 2006-12, 2008.
  • Giantonio BJ, Catalano PJ, Meropol NJ, et al.: High-dose bevacizumab improves survival when combined with FOLFOX4 in previously treated advanced colorectal cancer: results from the Eastern Cooperative Oncology Group (ECOG) study E3200. [Abstract] J Clin Oncol 23 (Suppl 16): A-2, 1s, 2005.
  • Loupakis F, Cremolini C, Masi G, et al.: Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med 371 (17): 1609-18, 2014.
  • Cunningham D, Humblet Y, Siena S, et al.: Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351 (4): 337-45, 2004.
  • Van Cutsem E, Köhne CH, Hitre E, et al.: Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360 (14): 1408-17, 2009.
  • Tol J, Koopman M, Cats A, et al.: Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 360 (6): 563-72, 2009.
  • Maughan TS, Adams RA, Smith CG, et al.: Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet 377 (9783): 2103-14, 2011.
  • Adams RA, Meade AM, Seymour MT, et al.: Intermittent versus continuous oxaliplatin and fluoropyrimidine combination chemotherapy for first-line treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet Oncol 12 (7): 642-53, 2011.
  • Van Cutsem E, Tabernero J, Lakomy R, et al.: Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 30 (28): 3499-506, 2012.
  • Tabernero J, Yoshino T, Cohn AL, et al.: Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol 16 (5): 499-508, 2015.
  • Van Cutsem E, Peeters M, Siena S, et al.: Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 25 (13): 1658-64, 2007.
  • Douillard JY, Siena S, Cassidy J, et al.: Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 28 (31): 4697-705, 2010.
  • Douillard JY, Oliner KS, Siena S, et al.: Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 369 (11): 1023-34, 2013.
  • Hecht JR, Mitchell E, Chidiac T, et al.: A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 27 (5): 672-80, 2009.
  • Peeters M, Price TJ, Cervantes A, et al.: Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol 28 (31): 4706-13, 2010.
  • Heinemann V, von Weikersthal LF, Decker T, et al.: FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 15 (10): 1065-75, 2014.
  • Venook AP, Niedzwiecki D, Lenz HJ, et al.: CALGB/SWOG 80405: Phase III trial of irinotecan/5-FU/leucovorin (FOLFIRI) or oxaliplatin/5-FU/leucovorin (mFOLFOX6) with bevacizumab (BV) or cetuximab (CET) for patients (pts) with KRAS wild-type (wt) untreated metastatic adenocarcinoma of the colon or rectum (MCRC). [Abstract] J Clin Oncol 32 (Suppl 5): A-LBA3, 2014.
  • Stintzing S, Modest DP, Rossius L, et al.: FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab for metastatic colorectal cancer (FIRE-3): a post-hoc analysis of tumour dynamics in the final RAS wild-type subgroup of this randomised open-label phase 3 trial. Lancet Oncol 17 (10): 1426-1434, 2016.
  • Modest DP, Stintzing S, von Weikersthal LF, et al.: Impact of Subsequent Therapies on Outcome of the FIRE-3/AIO KRK0306 Trial: First-Line Therapy With FOLFIRI Plus Cetuximab or Bevacizumab in Patients With KRAS Wild-Type Tumors in Metastatic Colorectal Cancer. J Clin Oncol 33 (32): 3718-26, 2015.
  • Grothey A, Sobrero AF, Siena S, et al.: Results of a phase III randomized, double-blind, placebo-controlled, multicenter trial (CORRECT) of regorafenib plus best supportive care (BSC) versus placebo plus BSC in patients (pts) with metastatic colorectal cancer (mCRC) who have progressed after standard therapies. [Abstract] J Clin Oncol 30 (Suppl 4): A-LBA385, 2012.
  • Grothey A, Van Cutsem E, Sobrero A, et al.: Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381 (9863): 303-12, 2013.
  • Mayer RJ, Van Cutsem E, Falcone A, et al.: Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N Engl J Med 372 (20): 1909-19, 2015.
  • Rothenberg ML, Eckardt JR, Kuhn JG, et al.: Phase II trial of irinotecan in patients with progressive or rapidly recurrent colorectal cancer. J Clin Oncol 14 (4): 1128-35, 1996.
  • Conti JA, Kemeny NE, Saltz LB, et al.: Irinotecan is an active agent in untreated patients with metastatic colorectal cancer. J Clin Oncol 14 (3): 709-15, 1996.
  • Rougier P, Van Cutsem E, Bajetta E, et al.: Randomised trial of irinotecan versus fluorouracil by continuous infusion after fluorouracil failure in patients with metastatic colorectal cancer. Lancet 352 (9138): 1407-12, 1998.
  • Cunningham D, Pyrhönen S, James RD, et al.: Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. Lancet 352 (9138): 1413-8, 1998.
  • Rothenberg ML, Oza AM, Bigelow RH, et al.: Superiority of oxaliplatin and fluorouracil-leucovorin compared with either therapy alone in patients with progressive colorectal cancer after irinotecan and fluorouracil-leucovorin: interim results of a phase III trial. J Clin Oncol 21 (11): 2059-69, 2003.
  • Valone FH, Friedman MA, Wittlinger PS, et al.: Treatment of patients with advanced colorectal carcinomas with fluorouracil alone, high-dose leucovorin plus fluorouracil, or sequential methotrexate, fluorouracil, and leucovorin: a randomized trial of the Northern California Oncology Group. J Clin Oncol 7 (10): 1427-36, 1989.
  • Erlichman C, Fine S, Wong A, et al.: A randomized trial of fluorouracil and folinic acid in patients with metastatic colorectal carcinoma. J Clin Oncol 6 (3): 469-75, 1988.
  • Doroshow JH, Multhauf P, Leong L, et al.: Prospective randomized comparison of fluorouracil versus fluorouracil and high-dose continuous infusion leucovorin calcium for the treatment of advanced measurable colorectal cancer in patients previously unexposed to chemotherapy. J Clin Oncol 8 (3): 491-501, 1990.
  • Poon MA, O'Connell MJ, Wieand HS, et al.: Biochemical modulation of fluorouracil with leucovorin: confirmatory evidence of improved therapeutic efficacy in advanced colorectal cancer. J Clin Oncol 9 (11): 1967-72, 1991.
  • Wadler S, Lembersky B, Atkins M, et al.: Phase II trial of fluorouracil and recombinant interferon alfa-2a in patients with advanced colorectal carcinoma: an Eastern Cooperative Oncology Group study. J Clin Oncol 9 (10): 1806-10, 1991.
  • Grem JL, Jordan E, Robson ME, et al.: Phase II study of fluorouracil, leucovorin, and interferon alfa-2a in metastatic colorectal carcinoma. J Clin Oncol 11 (9): 1737-45, 1993.
  • Wong CS, Cummings BJ, Brierley JD, et al.: Treatment of locally recurrent rectal carcinoma--results and prognostic factors. Int J Radiat Oncol Biol Phys 40 (2): 427-35, 1998.
  • Crane CH, Janjan NA, Abbruzzese JL, et al.: Effective pelvic symptom control using initial chemoradiation without colostomy in metastatic rectal cancer. Int J Radiat Oncol Biol Phys 49 (1): 107-16, 2001.
  • Baron TH: Expandable metal stents for the treatment of cancerous obstruction of the gastrointestinal tract. N Engl J Med 344 (22): 1681-7, 2001.
  • Power DG, Healey-Bird BR, Kemeny NE: Regional chemotherapy for liver-limited metastatic colorectal cancer. Clin Colorectal Cancer 7 (4): 247-59, 2008.
  • Khatri VP, Chee KG, Petrelli NJ: Modern multimodality approach to hepatic colorectal metastases: solutions and controversies. Surg Oncol 16 (1): 71-83, 2007.
  • Pawlik TM, Choti MA: Surgical therapy for colorectal metastases to the liver. J Gastrointest Surg 11 (8): 1057-77, 2007.
  • Adson MA, van Heerden JA, Adson MH, et al.: Resection of hepatic metastases from colorectal cancer. Arch Surg 119 (6): 647-51, 1984.
  • Gayowski TJ, Iwatsuki S, Madariaga JR, et al.: Experience in hepatic resection for metastatic colorectal cancer: analysis of clinical and pathologic risk factors. Surgery 116 (4): 703-10; discussion 710-1, 1994.
  • Hughes KS, Simon R, Songhorabodi S, et al.: Resection of the liver for colorectal carcinoma metastases: a multi-institutional study of patterns of recurrence. Surgery 100 (2): 278-84, 1986.
  • Schlag P, Hohenberger P, Herfarth C: Resection of liver metastases in colorectal cancer--competitive analysis of treatment results in synchronous versus metachronous metastases. Eur J Surg Oncol 16 (4): 360-5, 1990.
  • Rosen CB, Nagorney DM, Taswell HF, et al.: Perioperative blood transfusion and determinants of survival after liver resection for metastatic colorectal carcinoma. Ann Surg 216 (4): 493-504; discussion 504-5, 1992.
  • Fong Y, Fortner J, Sun RL, et al.: Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 230 (3): 309-18; discussion 318-21, 1999.
  • Scheele J, Stangl R, Altendorf-Hofmann A: Hepatic metastases from colorectal carcinoma: impact of surgical resection on the natural history. Br J Surg 77 (11): 1241-6, 1990.
  • Scheele J, Stangl R, Altendorf-Hofmann A, et al.: Indicators of prognosis after hepatic resection for colorectal secondaries. Surgery 110 (1): 13-29, 1991.
  • Wagman LD, Kemeny MM, Leong L, et al.: A prospective, randomized evaluation of the treatment of colorectal cancer metastatic to the liver. J Clin Oncol 8 (11): 1885-93, 1990.
  • Coppa GF, Eng K, Ranson JH, et al.: Hepatic resection for metastatic colon and rectal cancer. An evaluation of preoperative and postoperative factors. Ann Surg 202 (2): 203-8, 1985.
  • Taylor M, Forster J, Langer B, et al.: A study of prognostic factors for hepatic resection for colorectal metastases. Am J Surg 173 (6): 467-71, 1997.
  • Jaeck D, Bachellier P, Guiguet M, et al.: Long-term survival following resection of colorectal hepatic metastases. Association Française de Chirurgie. Br J Surg 84 (7): 977-80, 1997.
  • Fernández-Trigo V, Shamsa F, Sugarbaker PH: Repeat liver resections from colorectal metastasis. Repeat Hepatic Metastases Registry. Surgery 117 (3): 296-304, 1995.
  • Weeks JC, Nelson H, Gelber S, et al.: Short-term quality-of-life outcomes following laparoscopic-assisted colectomy vs open colectomy for colon cancer: a randomized trial. JAMA 287 (3): 321-8, 2002.
  • Higgins GA, Amadeo JH, McElhinney J, et al.: Efficacy of prolonged intermittent therapy with combined 5-fluorouracil and methyl-CCNU following resection for carcinoma of the large bowel. A Veterans Administration Surgical Oncology Group report. Cancer 53 (1): 1-8, 1984.
  • Buyse M, Zeleniuch-Jacquotte A, Chalmers TC: Adjuvant therapy of colorectal cancer. Why we still don't know. JAMA 259 (24): 3571-8, 1988.
  • Laurie JA, Moertel CG, Fleming TR, et al.: Surgical adjuvant therapy of large-bowel carcinoma: an evaluation of levamisole and the combination of levamisole and fluorouracil. The North Central Cancer Treatment Group and the Mayo Clinic. J Clin Oncol 7 (10): 1447-56, 1989.
  • Moertel CG, Fleming TR, Macdonald JS, et al.: Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N Engl J Med 322 (6): 352-8, 1990.
  • Leonard GD, Brenner B, Kemeny NE: Neoadjuvant chemotherapy before liver resection for patients with unresectable liver metastases from colorectal carcinoma. J Clin Oncol 23 (9): 2038-48, 2005.
  • Rossi S, Buscarini E, Garbagnati F, et al.: Percutaneous treatment of small hepatic tumors by an expandable RF needle electrode. AJR Am J Roentgenol 170 (4): 1015-22, 1998.
  • Solbiati L, Livraghi T, Goldberg SN, et al.: Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients. Radiology 221 (1): 159-66, 2001.
  • Lencioni R, Goletti O, Armillotta N, et al.: Radio-frequency thermal ablation of liver metastases with a cooled-tip electrode needle: results of a pilot clinical trial. Eur Radiol 8 (7): 1205-11, 1998.
  • Curley SA, Izzo F, Delrio P, et al.: Radiofrequency ablation of unresectable primary and metastatic hepatic malignancies: results in 123 patients. Ann Surg 230 (1): 1-8, 1999.
  • Oshowo A, Gillams A, Harrison E, et al.: Comparison of resection and radiofrequency ablation for treatment of solitary colorectal liver metastases. Br J Surg 90 (10): 1240-3, 2003.
  • Livraghi T, Solbiati L, Meloni F, et al.: Percutaneous radiofrequency ablation of liver metastases in potential candidates for resection: the "test-of-time approach". Cancer 97 (12): 3027-35, 2003.
  • Pawlik TM, Izzo F, Cohen DS, et al.: Combined resection and radiofrequency ablation for advanced hepatic malignancies: results in 172 patients. Ann Surg Oncol 10 (9): 1059-69, 2003.
  • Kemeny N, Huang Y, Cohen AM, et al.: Hepatic arterial infusion of chemotherapy after resection of hepatic metastases from colorectal cancer. N Engl J Med 341 (27): 2039-48, 1999.
  • Kemeny MM, Adak S, Gray B, et al.: Combined-modality treatment for resectable metastatic colorectal carcinoma to the liver: surgical resection of hepatic metastases in combination with continuous infusion of chemotherapy--an intergroup study. J Clin Oncol 20 (6): 1499-505, 2002.
  • Kemeny N, Daly J, Reichman B, et al.: Intrahepatic or systemic infusion of fluorodeoxyuridine in patients with liver metastases from colorectal carcinoma. A randomized trial. Ann Intern Med 107 (4): 459-65, 1987.
  • Chang AE, Schneider PD, Sugarbaker PH, et al.: A prospective randomized trial of regional versus systemic continuous 5-fluorodeoxyuridine chemotherapy in the treatment of colorectal liver metastases. Ann Surg 206 (6): 685-93, 1987.
  • Rougier P, Laplanche A, Huguier M, et al.: Hepatic arterial infusion of floxuridine in patients with liver metastases from colorectal carcinoma: long-term results of a prospective randomized trial. J Clin Oncol 10 (7): 1112-8, 1992.
  • Kemeny N, Cohen A, Seiter K, et al.: Randomized trial of hepatic arterial floxuridine, mitomycin, and carmustine versus floxuridine alone in previously treated patients with liver metastases from colorectal cancer. J Clin Oncol 11 (2): 330-5, 1993.
  • Reappraisal of hepatic arterial infusion in the treatment of nonresectable liver metastases from colorectal cancer. Meta-Analysis Group in Cancer. J Natl Cancer Inst 88 (5): 252-8, 1996.
  • McGinn CJ, Lawrence TS: Clinical Results of the Combination of Radiation and Fluoropyrimidines in the Treatment of Intrahepatic Cancer. Semin Radiat Oncol 7 (4): 313-323, 1997.
  • Rectal Cancer Treatment (PDQ®)

    Stage IV and Recurrent Rectal Cancer Treatment

    Treatment of patients with advanced or recurrent rectal cancer depends on the location of the disease.

    Metastatic and Recurrent Rectal Cancer

    Standard treatment options for stage IV and recurrent rectal cancer include the following:

  • Surgery with or without chemotherapy or radiation therapy.
  • First-line chemotherapy and targeted therapy.
  • Second-line chemotherapy.
  • Palliative therapy.
  • Surgery with or without chemotherapy or radiation therapy

    For patients with locally recurrent, liver-only, or lung-only metastatic disease, surgical resection, if feasible, is the only potentially curative treatment.

    Patients with limited pulmonary metastasis, and patients with both pulmonary and hepatic metastasis, may also be considered for surgical resection, with 5-year survival possible in highly selected patients.

    The presence of hydronephrosis associated with recurrence appears to be a contraindication to surgery with curative intent.

    Locally recurrent rectal cancer may be resectable, particularly if an inadequate prior operation was performed. For patients with local recurrence alone after an initial, attempted curative resection, aggressive local therapy with repeat low anterior resection and coloanal anastomosis, abdominoperineal resection, or posterior or total pelvic exenteration can lead to long-term disease-free survival.

    The use of induction chemoradiation therapy for previously nonirradiated patients with locally advanced pelvic recurrence (pelvic side-wall, sacral, and/or adjacent organ involvement) may increase resectability and allow for sphincter preservation.

    Intraoperative radiation therapy in patients who underwent previous external-beam radiation therapy may improve local control in patients with locally recurrent disease, with acceptable morbidity.

    First-line chemotherapy and targeted therapy

    The following are active U.S. Food and Drug Administration (FDA)-approved drugs that are used alone and in combination with other drugs for patients with metastatic colorectal cancer:

  • Fluorouracil (5-FU).
  • Irinotecan.
  • Oxaliplatin.
  • Capecitabine.
  • Bevacizumab.
  • FOLFOXIRI (irinotecan, oxaliplatin, leucovorin [LV], and 5-FU).
  • Cetuximab.
  • Aflibercept.
  • Ramucirumab.
  • Panitumumab.
  • Anti-epidermal growth factor receptor (EGFR) antibody versus anti-vascular endothelial growth factor (VEGF) antibody with first-line chemotherapy. .
  • Regorafenib.
  • TAS-102.
  • Pembrolizumab.
  • 5-FU

    When 5-FU was the only active chemotherapy drug, trials in patients with locally advanced, unresectable, or metastatic disease demonstrated partial responses and prolongation of the time-to-progression (TTP) of disease,

    and improved survival and quality of life in patients who received chemotherapy versus best supportive care.

    Several trials have analyzed the activity and toxic effects of various 5-FU/LV regimens using different doses and administration schedules and showed essentially equivalent results with a median survival time in the approximately 12-month range.

    Irinotecan and oxaliplatin

    Three randomized studies in patients with metastatic colorectal cancer demonstrated improved response rates, progression-free survival (PFS), and overall survival (OS) when irinotecan or oxaliplatin was combined with 5-FU/LV.

    Evidence (irinotecan vs. oxaliplatin):

  • An intergroup study (NCCTG-N9741 [NCT00003594]) compared irinotecan/5-FU/LV (IFL) with oxaliplatin/LV/5-FU (FOLFOX4) in first-line treatment for patients with metastatic colorectal cancer.
  • [Level of evidence: 1iiA]
  • Patients assigned to FOLFOX4 experienced an improved PFS compared with patients randomly assigned to IFL (median, 8.7 months vs. 6.9 months; P = .014; hazard ratio [HR], 0.74; 95% confidence interval [CI], 0.61–0.89) and OS (19.5 months vs. 15.0 months; P = .001; HR, 0.66; 95% CI, 0.54–0.82).
  • Subsequently, two studies compared FOLFOX with LV/5-FU/irinotecan (FOLFIRI), and patients were allowed to cross over after progression on first-line therapy.
  • [Level of evidence: 1iiDiii]
  • PFS and OS were identical between the treatment arms in both studies.
  • The Bolus, Infusional, or Capecitabine with Camptosar-Celecoxib (BICC-C [NCT00094965]) trial evaluated several different irinotecan-based regimens in patients with previously untreated metastatic colorectal cancer: FOLFIRI, irinotecan plus bolus 5-FU/LV (mIFL), and capecitabine/irinotecan (CAPIRI).
  • The study randomly assigned 430 patients and was closed early due to poor accrual.
  • The patients who received FOLFIRI had a better PFS than the patients who received either mIFL (7.6 months vs. 5.9 months; P = .004) or CAPIRI (7.6 months vs. 5.8 months; P = .015).
  • Patients who received CAPIRI had the highest (grade 3 or higher) rates of nausea, vomiting, diarrhea, dehydration, and hand-foot syndrome.
  • Since the publication of these studies, the use of either FOLFOX or FOLFIRI is considered acceptable for first-line treatment of patients with metastatic colorectal cancer. However, when using an irinotecan-based regimen as first-line treatment of metastatic colorectal cancer, FOLFIRI is preferred.

    [Level of evidence: 1iiDiii]

    Capecitabine

    Before the advent of multiagent chemotherapy, two randomized studies demonstrated that capecitabine was associated with equivalent efficacy when compared with the Mayo Clinic regimen of 5-FU/LV.

    [Level of evidence: 1iiA]

    Randomized phase III trials have addressed the equivalence of substituting capecitabine for infusional 5-FU. Two phase III studies have evaluated capcitabine/oxaliplatin (CAPOX) versus 5-FU/oxaliplatin regimens (FUOX or FUFOX).

    Evidence (oxaliplatin vs. capecitabine):

  • The Arbeitsgemeinschaft Internische Onkologie (AIO) Colorectal Study Group randomly assigned 474 patients to either CAPOX or FUFOX.
  • The median PFS was 7.1 months for the CAPOX arm and 8.0 months for the FUFOX arm (HR, 1.17; 95% CI, 0.96–1.43; P = .117), and the HR was in the prespecified equivalence range.
  • The Spanish Cooperative Group randomly assigned 348 patients to CAPOX or FUOX.
  • [Level of evidence: 1iiDiii]
  • The TTP was 8.9 months for CAPOX versus 9.5 months for FUOX (P = .153) and met the prespecified range for noninferiority.
  • When using an oxaliplatin-based regimen as first-line treatment of metastatic colorectal cancer, a CAPOX regimen is not inferior to a 5-FU/oxaliplatin regimen.

    Bevacizumab

    Bevacizumab can reasonably be added to either FOLFIRI or FOLFOX for patients undergoing first-line treatment of metastatic colorectal cancer. There are currently no completed randomized controlled studies evaluating whether continued use of bevacizumab in second-line or third-line treatment after progressing on a first-line bevacizumab regimen extends survival.

    Evidence (bevacizumab):

  • After bevacizumab was approved, the BICC-C trial was amended, and an additional 117 patients were randomly assigned to receive FOLFIRI/bevacizumab or mIFL/bevacizumab.
  • Although the primary endpoint of PFS was not significantly different, patients who received FOLFIRI/bevacizumab had a significantly better OS (28.0 months vs. 19.2 months; P = .037; HR for death, 1.79; 95% CI, 1.12–2.88).
  • In the Hurwitz study, patients with previously untreated metastatic colorectal cancer were randomly assigned to either IFL or IFL/bevacizumab.
  • The patients randomly assigned to IFL/bevacizumab experienced a significantly better PFS (10.6 months with IFL/bevacizumab compared with 6.2 months with IFL/placebo; HR for disease progression, 0.54; P < .001) and OS (20.3 months with IFL/bevacizumab compared with 15.6 months with IFL/placebo; HRdeath, 0.66; P < .001).
  • Despite the lack of direct data, in standard practice bevacizumab was added to FOLFOX as a standard first-line regimen based on the results of NCCTG-N9741.
  • Subsequently, in a randomized phase III study, 1,401 patients with untreated, stage IV colorectal cancer were randomly assigned in a 2 × 2 factorial design to CAPOX versus FOLFOX4, then to bevacizumab versus placebo. PFS was the primary endpoint.
  • [Level of evidence: 1iiDiii]
  • The median PFS was 9.4 months for patients who received bevacizumab and 8.0 months for the patients who received placebo (HR, 0.83; 97.5% CI, 0.72–0.95; P = .0023).
  • Median OS was 21.3 months for patients who received bevacizumab and 19.9 months for patients who received placebo (HR, 0.89; 97.5% CI, 0.76–1.03; P = .077).
  • The median PFS (intention-to-treat analysis) was 8.0 months in the pooled CAPOX-containing arms versus 8.5 months in the FOLFOX4-containing arms (HR, 1.04; 97.5% CI, 0.93–1.16), with the upper limit of the 97.5% CI being below the predefined noninferiority margin of 1.23.
  • The effect of bevacizumab on OS is likely to be less than what was seen in the original Hurwitz study.
  • Investigators from the Eastern Cooperative Oncology Group randomly assigned patients who had progressed on 5-FU/LV and irinotecan to either FOLFOX or FOLFOX/bevacizumab.
  • Patients randomly assigned to FOLFOX/bevacizumab experienced a statistically significant improvement in PFS compared with patients assigned to FOLFOX alone (7.43 months vs. 4.7 months; HR, 0.61; P < .0001) and OS (12.9 months vs. 10.8 months; HR, 0.75; P = .0011).
  • [Level of evidence: 1iiA]
  • FOLFOXIRI

    Evidence (FOLFOXIRI):

  • The combination of FOLFOXIRI with bevacizumab was compared with FOLFIRI with bevacizumab in a randomized, phase III study of 508 patients with untreated metastatic colorectal cancer.
  • The median PFS was 12.1 months in the FOLFOXIRI group, compared with 9.7 months in the FOLFIRI group (HR for progression, 0.75; 95% CI, 0.62–0.90; P = .003). OS was not significantly different between the groups (31.0 vs. 25.8 months; HRdeath, 0.79; 95% CI, 0.63–1.00; P = .054).
  • [Level of evidence: 1iiDiii]
  • Patients who received FOLFOXIRI had significantly more grade 3 and 4 toxicities, including neutropenia, stomatitis, and peripheral neuropathy.
  • Cetuximab

    Cetuximab is a partially humanized monoclonal antibody against EGFR. Importantly, patients with mutant KRAS tumors may experience worse outcome when cetuximab is added to multiagent chemotherapy regimens containing bevacizumab.

    Evidence (cetuximab):

  • For patients who have progressed on irinotecan-containing regimens, a randomized, phase II study was performed that used either cetuximab or irinotecan/cetuximab.
  • [Level of evidence: 3iiiDiv]
  • The median TTP for patients who received cetuximab was 1.5 months, compared with median TTP of 4.2 months for patients who received irinotecan and cetuximab. On the basis of this study, cetuximab was approved for use in patients with metastatic colorectal cancer refractory to 5-FU and irinotecan.
  • The Crystal Study (EMR 62202-013 [NCT00154102]) randomly assigned 1,198 patients with stage IV colorectal cancer to FOLFIRI with or without cetuximab.
  • [Level of Evidence: 1iiDii]
  • The addition of cetuximab was associated with an improved PFS (HR, 0.85; 95% CI, 0.72–0.99; P = .048 by a stratified log–rank test) but not OS.
  • Retrospective studies of patients with metastatic colorectal cancer have suggested that responses to anti-EGFR antibody therapy are confined to patients with tumors that harbor wild types of KRAS (i.e., lack activating mutations at codon 12 or 13 of the KRAS gene).
  • A subset analysis evaluating efficacy vis-à-vis KRAS status was done in patients enrolled on the Crystal Study. There was a significant interaction for KRAS mutation status and treatment for tumor response (P = .03) but not for PFS (P = .07). Among patients with KRAS wild-type tumors, the HR favored the FOLFIRI/cetuximab group (HR, 0.68; 95% CI, 0.50–0.94).
  • In a randomized trial, patients with metastatic colorectal cancer received capecitabine/oxaliplatin/bevacizumab with or without cetuximab.
  • [Level of evidence: 1iiDiii]
  • The median PFS was 9.4 months in the group who received cetuximab and 10.7 months in the group who did not receive cetuximab (P = .01).
  • In a subset analysis, cetuximab-treated patients with tumors bearing a mutated KRAS gene had significantly decreased PFS compared with cetuximab-treated patients with KRAS wild-type tumors (8.1 months vs. 10.5 months; P = .04).
  • Cetuximab-treated patients with mutated KRAS tumors had a significantly shorter PFS than patients with mutated KRAS tumors who did not receive cetuximab (8.1 months vs. 12.5 months; P = .003) and a significantly shorter OS (17.2 months vs. 24.9 months; P = .03).
  • The Medical Research Council (MRC) (UKM-MRC-COIN-CR10 [NCT00182715] or COIN trial) sought to answer the question of whether adding cetuximab to combination chemotherapy with a fluoropyrimidine and oxaliplatin in first-line treatment for patients with KRAS wild-type tumors was beneficial.
  • In addition, the MRC sought to evaluate the effect of intermittent chemotherapy versus continuous chemotherapy. The 1,630 patients were randomly assigned to three treatment groups:
  • Arm A: fluoropyrimidine/oxaliplatin.
  • Arm B: fluoropyrimidine/oxaliplatin/cetuximab.
  • Arm C: intermittent fluoropyrimidine/oxaliplatin.
  • The comparisons between arms A and B and arms A and C were analyzed and published separately.

  • In patients with KRAS wild-type tumors (arm A, n = 367; arm B, n = 362), OS did not differ between treatment groups (median survival, 17.9 months [interquartile range (IQR), 10.3–29.2] in the control group vs. 17.0 months [IQR, 9.4–30.1] in the cetuximab group; HR, 1.04; 95% CI, 0.87–1.23; P = .67). Similarly, there was no effect on PFS (8.6 months [IQR, 5.0–12.5] in the control group vs. 8.6 months [IQR, 5.1–13.8] in the cetuximab group; HR, 0.96; 95% CI, 0.82–1.12, P = .60).
  • [Level of evidence: 1iiA]
  • The reasons for lack of benefit in adding cetuximab are unclear. Subset analyses suggest that the use of capecitabine was associated with an inferior outcome, and the use of second-line therapy was less in patients treated with cetuximab.
  • There was no difference between the continuously treated patients (arm A) and the intermittently treated patients (arm C).
  • Median survival in the intent-to-treat population (n = 815 in both groups) was 15.8 months (IQR, 9.4–26.1) in arm A and 14.4 months (IQR, 8.0–24.7) in arm C (HR, 1.084; 80% CI, 1.008–1.165).
  • In the per-protocol population, which included only those patients who were free from progression at 12 weeks and randomly assigned to continue treatment or go on a chemotherapy holiday (arm A, n = 467; arm C, n = 511), median survival was 19.6 months (IQR, 13.0–28.1) in arm A and 18.0 months (IQR, 12.1–29.3) in arm C (HR, 1.087, 95% CI, 0.986–1.198).
  • The upper limits of CIs for HRs in both analyses were greater than the predefined noninferiority boundary. While intermittent chemotherapy was not deemed noninferior, there appeared to be clinically insignificant differences in patient outcomes.
  • Aflibercept

    Aflibercept is a novel anti-VEGF molecule and has been evaluated as a component of second-line therapy in patients with metastatic colorectal cancer.

    Evidence (aflibercept):

  • In one trial, 1,226 patients were randomly assigned to receive aflibercept (4 mg/kg intravenously) or placebo every 2 weeks in combination with FOLFIRI.
  • [Level of evidence: 1A]
  • Patients who received aflibercept plus FOLFIRI had significantly improved OS rates, with median survival times of 13.50 months compared with patients who received placebo plus FOLFIRI, with median survival times of 12.06 months (HR, 0.817; 95.34% CI, 0.713–0.937; P = .0032).
  • Patients who received aflibercept plus FOLFIRI also had significantly improved PFS rates, with median PFS rates of 6.90 months compared with patients who received placebo plus FOLFIRI, with median PFS rates of 4.67 months (HR, 0.758; 95% CI, 0.661–0.869; P < .0001).
  • On the basis of these results, the use of FOLFIRI plus aflibercept is an acceptable second-line regimen for patients previously treated with FOLFOX-based chemotherapy. Whether to continue bevacizumab or initiate aflibercept in second-line therapy has not been addressed as yet in any clinical trial, and there are no data available.
  • Ramucirumab

    Ramucirumab is a fully humanized monoclonal antibody that binds to vascular endothelial growth factor receptor-2 (VEGFR-2).

    Evidence (ramucirumab):

  • In the randomized, unblinded, phase III RAISE (NCT01183780) study, 1,072 patients with stage IV colorectal cancer who had progressed on first-line chemotherapy were randomly assigned to FOLFIRI with or without ramucirumab (8 mg/kg).
  • [Level of evidence: 1iiA]
  • Patients assigned to FOLFIRI plus ramucirumab had a significant improvement in median OS (13.3 months vs. 11.7 months; HR, 0.84; P = .0219) and PFS (5.7 months vs. 4.5 months; HR, 0.793; P = .0005).
  • Grade 3 adverse events were more common in the ramucirumab group, including grade 3 neutropenia.
  • On the basis of this data, FOLFIRI plus ramucirumab is an acceptable second-line regimen for patients previously treated with FOLFOX-bevacizumab. Whether to continue bevacizumab in second-line chemotherapy or use ramucirumab in second-line chemotherapy has not yet been addressed in a clinical trial.
  • Panitumumab

    Panitumumab is a fully humanized antibody against the EGFR. The FDA approved panitumumab for use in patients with metastatic colorectal cancer refractory to chemotherapy.

    In clinical trials, panitumumab demonstrated efficacy as a single agent or in combination therapy, which was consistent with the effects on PFS and OS with cetuximab. There appears to be a consistent class effect.

    Evidence (panitumumab):

  • In a phase III trial, patients with chemotherapy-refractory colorectal cancer were randomly assigned to panitumumab or best supportive care.
  • [Level of evidence: 1iiDiii]
  • Patients who received panitumumab experienced an improved PFS (8 weeks vs. 7.3 weeks; HR, 0.54; 95% CI, 0.44–0.66; P < .0001).
  • There was no difference in OS, which was thought to be the result of 76% of patients on best supportive care crossing over to panitumumab.
  • In the Panitumumab Randomized Trial in Combination With Chemotherapy for Metastatic Colorectal Cancer to Determine Efficacy (PRIME [NCT00364013]) study, 1,183 patients were randomly assigned to FOLFOX4 with or without panitumumab as first-line therapy for metastatic colorectal cancer. The study was amended to enlarge the sample size to address patients with KRAS wild-type tumors and patients with mutant KRAS tumors separately.
  • [Level of evidence: 1iiDiii]
  • For patients with KRAS wild-type tumors, a statistically significant improvement in PFS was observed in those who received panitumumab/FOLFOX4 compared with those who received only FOLFOX4 (HR, 0.80; 95% CI, 0.66–0.97; P = .02, stratified log-rank test).
  • Median PFS was 9.6 months (95% CI, 9.2–11.1 months) for patients who received panitumumab/FOLFOX4 and 8.0 months (95% CI, 7.5–9.3 months) for patients who received FOLFOX4. OS was not significantly different between the groups (HR, 0.83; 95% CI, 0.67–1.02; P = .072).
  • For patients with mutant KRAS tumors, PFS was worse with the addition of panitumumab (HR, 1.29; 95% CI, 1.04–1.62; P = .02, stratified log–rank test).
  • Median PFS was 7.3 months (95% CI, 6.3–8.0 months) for panitumumab/FOLFOX4 and 8.8 months (95% CI, 7.7–9.4 months) for FOLFOX4 alone.
  • Subsequently, a retrospective analysis evaluated patients with wild-type KRAS exon 2 wild-type status for other KRAS and BRAF mutations.
  • Level of evidence: 3iiiA
  • Of the 620 patients who were initially identified as not having a mutation in exon 2 of KRAS, 108 patients (17%) were found to have additional RAS mutations and 53 patients (8%) were found to have BRAF mutations. In a retrospective analysis, patients without any RAS or BRAF mutations had a longer PFS (10.8 months vs. 9.2 months, P = .002) and OS (28.3 months vs. 20.9 months, P = .02) when assigned to the FOLFOX4/panitumumab arm than the patients assigned to the FOLFOX4 arm.
  • Similarly, the addition of panitumumab to a regimen of FOLFOX/bevacizumab resulted in a worse PFS and worse toxicity compared with a regimen of FOLFOX/bevacizumab alone in patients not selected for KRAS mutation in metastatic rectal cancer (11.4 months vs. 10.0 months; HR, 1.27; 95% CI, 1.06–1.52).
  • [Level of evidence: 1iiDiii]
  • In another study (NCT00339183), patients with metastatic colorectal cancer who had already received a fluoropyrimidine regimen were randomly assigned to either FOLFIRI or FOLFIRI/panitumumab.
  • [Level of evidence: 1iiDiii]
  • In a post hoc analysis, patients with KRAS wild-type tumors experienced a statistically significant PFS advantage (HR, 0.73; 95% CI, 0.59–0.90; P = .004, stratified log-rank).
  • Median PFS was 5.9 months (95% CI, 5.5–6.7 months) for FOLFIRI/panitumumab and 3.9 months (95% CI, 3.7–5.3 months) for FOLFIRI alone.
  • OS was not significantly different. Median OS was 14.5 months for the FOLFIRI/panitumumab group versus 12.5 months for the FOLFIRI alone group.
  • Patients with mutant KRAS tumors experienced no benefit from the addition of panitumumab.
  • Anti-EGFR antibody versus anti-VEGF antibody with first-line chemotherapy

    In the management of patients with stage IV colorectal cancer, it is unknown whether patients with KRAS wild-type cancer should receive an anti-EGFR antibody with chemotherapy or an anti-VEGF antibody with chemotherapy. Two studies attempted to answer this question.

    Evidence (anti-EGFR antibody vs. anti-VEGF antibody with first-line chemotherapy):

  • The FIRE-3 (NCT00433927) study randomly assigned 592 patients with KRAS exon 2 wild-type tumors who were previously untreated to FOLFIRI plus cetuximab (297 patients) or FOLFIRI plus bevacizumab (295 patients). The primary endpoint of the study was objective response rate.
  • [Level of evidence: 1iiA]
  • The objective response rate was not significantly different between the groups (objective response rate, 62.0%; 95% CI, 56.2–67.5 vs. objective response rate, 58.0%; 95% CI, 52.1–63.7; odds ratio, 1.18; 95% CI, 0.85–1.64; P = .18).
  • Median PFS was 10.0 months (95% CI, 8.8–10.8) in the cetuximab group and 10.3 months (95% CI, 9.8–11.3) in the bevacizumab group (HR, 1.06; 95% CI, 0.88–1.26; P = .55).
  • Median OS was 28.7 months (95% CI, 24.0–36.6) in the cetuximab group compared with 25.0 months (range, 22.7–27.6 months) in the bevacizumab group (HR, 0.77; 95% CI, 0.62–0.96; P = .017).
  • In a post hoc analysis of patients with expanded RAS wild-type tumors (sequencing for mutational hot spots within KRAS and NRAS genes, including exon 2 codons 12 and 13; exon 3 codons 59 and 61; and exon 4 codons 117 and 146), the median OS was 33.1 months (95% CI, 24.5–39.4) in the cetuximab group compared with 25.0 months (95% CI, 23.0–28.1) in the bevacizumab group (HR, 0.70; 95% CI, 0.54–0.90; P = .0059).
  • Of note, only 52% of patients assigned to the bevacizumab arm subsequently received cetuximab or panitumumab.
  • The Cancer and Leukemia Group B Intergroup study 80405 (NCT00265850) was presented at the American Society of Clinical Oncology meeting in 2014. This study randomly assigned 2,334 previously untreated patients with KRAS wild-type cancer to chemotherapy (FOLFOX or FOLFIRI) plus bevacizumab or chemotherapy plus cetuximab. OS was the primary endpoint.
  • [Level of evidence: 1iiDiii]
  • There was no statistically significant difference in OS among the patients assigned to bevacizumab or cetuximab (for OS differences, chemotherapy/bevacizumab = 29.04 months [range, 25.66–31.21 months] vs. chemotherapy/cetuximab = 29.93 months [range, 27.56–31.21 months]; HR, 0.92 [0.78, 1.09]; P = .34).
  • On the basis of these two studies, no apparent significant difference is evident about starting treatment with chemotherapy/bevacizumab or chemotherapy/cetuximab in patients with KRAS wild-type metastatic colorectal cancer. However, in patients with KRAS wild-type cancer, administration of an anti-EGFR antibody at some point in the course of management improves OS.

    Regorafenib

    Regorafenib is an inhibitor of multiple tyrosine kinase pathways including VEGF. In September 2012, the FDA granted approval for the use of regorafenib in patients who had progressed on previous therapy.

    Evidence (regorafenib):

  • The safety and effectiveness of regorafenib were evaluated in a single, clinical study of 760 patients with previously treated metastatic colorectal cancer. Patients were randomly assigned in a 2:1 fashion to receive regorafenib or a placebo in addition to the best supportive care.
  • Patients treated with regorafenib had a statistically significant improvement in OS (6.4 months in the regorafenib group vs. 5.0 months in the placebo group; HR, 0.77; 95% CI, 0.64–0.94; one-sided P = .0052).
  • TAS-102

    TAS-102 (Lonsurf) is an orally administered combination of a thymidine-based nucleic acid analog, trifluridine, and a thymidine phosphorylase inhibitor, tipiracil hydrochloride. Trifluridine, in its triphosphate form, inhibits thymidylate synthase; therefore, trifluridine, in this form, has an anti-tumor effect. Tipiracil hydrochloride is a potent inhibitor of thymidine phosphorylase, which actively degrades trifluridine. The combination of trifluridine and tipiracil allows for adequate plasma levels of trifluridine.

    Evidence (TAS-102):

  • A phase III, double-blind study (RECOURSE [NCT01607957]) randomly assigned 800 stage IV colorectal cancer patients whose cancer had been refractory to two previous therapies. Patients were required to have received 5-FU, oxaliplatin, irinotecan, bevacizumab and, if the patients had KRAS wild-type cancer, cetuximab or panitumumab. Patients were randomly assigned in a 2:1 ratio to receive best supportive care plus TAS-102 (n = 534) or placebo (n = 266). The median age of patients was 63 years, and the majority of patients (60%–63%) had received four or more previous lines of therapy. All patients had formerly received fluoropyrimidine, irinotecan, oxaliplatin, and bevacizumab, and 52% of them had received an EGFR inhibitor. Approximately 20% of the patients had received previous treatment with regorafenib.
  • [Level of evidence: 1iiA]
  • TAS-102 was administered at 35 mg/m2 twice daily with meals for 5 days, with 2 days of rest for 2 weeks, followed by a 14-day rest period.
  • The primary endpoint of the study was OS. The median OS for patients with metastatic colorectal cancer who received TAS-102 was 7.1 months compared with 5.3 months for those who received a placebo (HR, 0.68; P < .0001).
  • The median PFS time in the TAS-102 arm was 2 months versus 1.7 months with a placebo (HR, 0.48; P < .0001).
  • Secondary endpoints focused on PFS, overall response rate, and disease control rate.
  • The overall response rate was 1.6% with TAS-102, which consisted of a complete response in one patient and partial responses in other patients. The overall response rate with a placebo was 0.4% (P = .29).
  • TAS-102 was approved by the FDA for the treatment of metastatic colorectal cancer patientsbased on the results of the RECOURSE trial.

    Pembrolizumab

    Approximately 4% of patients with stage IV colorectal cancer will have tumors that are microsatellite unstable; this designation is also known as microsatellite-high (MSI-H). The MSI-H phenotype is associated with germline defects in the MLH1, MSH2, MSH6, or PMS2 genes, and is the primary phenotype observed in tumors from patients with hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome. Patients can also have the MSI-H phenotype because one of these genes was silenced via a process called DNA methylation. Testing for microsatellite instability can be done with molecular genetic tests, which look for microsatellite instability in the tumor tissue or with immunohistochemistry, which looks for the loss of mismatch repair proteins.

    In May 2017, the FDA granted approval for using pembrolizumab, a programmed cell death protein 1 (PD-1) antibody, in patients with microsatellite unstable tumors.

  • The approval was based on data from 149 patients with MSI-H or DNA mismatch repair cancers enrolled across 5 uncontrolled, multicohort, multicenter, single-arm clinical trials. Ninety patients had colorectal cancer, and 59 patients were diagnosed with one of 14 other cancer types. Patients received either 200 mg of pembrolizumab every 3 weeks or 10 mg/kg of pembrolizumab every 2 weeks. Treatment continued until unacceptable toxicity or disease progression. The major efficacy outcome measures were objective response rate, which was assessed by blinded independent central radiologists’ review in accordance with Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 and response duration.
  • Objective response rate was 39.6% (95% CI: 31.7, 47.9).
  • Responses lasted 6 months or longer for 78% percent of those who responded to pembrolizumab. There were 11 complete responses and 48 partial responses.
  • Objective response rate was similar whether patients were diagnosed with colorectal cancer (36%) or a different cancer type (46% across the 14 other cancer types).
  • Second-line chemotherapy

    Second-line chemotherapy with irinotecan in patients treated with 5-FU/LV as first-line therapy demonstrated improved OS when compared with either infusional 5-FU or supportive care.

    Similarly, a phase III trial randomly assigned patients who progressed on irinotecan and 5-FU/LV to bolus and infusional 5-FU/LV, single-agent oxaliplatin, or FOLFOX4. The median TTP for FOLFOX4 versus 5-FU/LV was 4.6 months versus 2.7 months (stratified log-rank test, 2-sided P < .001).

    [Level of evidence: 1iiDiii]

    Palliative therapy

    Palliative radiation therapy,

    chemotherapy,

    and chemoradiation therapy

    may be indicated. Palliative, endoscopically-placed stents may be used to relieve obstruction.

    Treatment of Liver Metastasis

    Approximately 15% to 25% of colorectal cancer patients will present with liver metastases at diagnosis, and another 25% to 50% will develop metachronous hepatic metastasis after resection of the primary tumor.

    Although only a small proportion of patients with liver metastasis are candidates for surgical resection, advances in tumor ablation techniques and in both regional and systemic chemotherapy administration provide a number of treatment options. These include the following:

  • Surgery.
  • Neoadjuvant chemotherapy.
  • Local ablation.
  • Adjuvant chemotherapy.
  • Intra-arterial chemotherapy after liver resection.
  • Surgery

    Hepatic metastasis may be considered to be resectable based on the following factors:

  • Limited number of lesions.
  • Intrahepatic locations of lesions.
  • Lack of major vascular involvement.
  • Absent or limited extrahepatic disease.
  • Sufficient functional hepatic reserve.
  • For patients with hepatic metastasis that is considered to be resectable, a negative margin resection has been associated with 5-year survival rates of 25% to 40% in mostly nonrandomized studies, such as the North Central Cancer Treatment Group trial NCCTG-934653 (NCT00002575).

    [Level of evidence: 3iiiDiv] Improved surgical techniques and advances in preoperative imaging have improved patient selection for resection. In addition, multiple studies with multiagent chemotherapy have demonstrated that patients with metastatic disease isolated to the liver, which historically would be considered unresectable, can occasionally be made resectable after the administration of neoadjuvant chemotherapy.

    Neoadjuvant chemotherapy

    Patients with hepatic metastases that are deemed unresectable will occasionally become candidates for resection if they have a good response to chemotherapy. These patients have 5-year survival rates similar to patients who initially had resectable disease.

    Local ablation

    Radiofrequency ablation has emerged as a safe technique (2% major morbidity and <1% mortality rate) that may provide long-term tumor control.

    Radiofrequency ablation and cryosurgical ablation remain options for patients with tumors that cannot be resected and for patients who are not candidates for liver resection.

    Adjuvant chemotherapy

    The role of adjuvant chemotherapy after potentially curative resection of liver metastases is uncertain.

    Evidence (adjuvant chemotherapy):

  • A trial of hepatic arterial floxuridine and dexamethasone plus systemic 5-FU/LV compared with systemic 5-FU/LV alone showed improved 2-year PFS (57% vs. 42%; P =.07) and OS (86% vs. 72%; P = .03) for patients in the combined therapy arm but did not show a significant statistical difference in median survival when compared with systemic 5-FU therapy alone.
  • [Level of evidence: 1iiA]
  • Median survival in the combined therapy arm was 72.2 months versus 59.3 months in the monotherapy arm (P = .21).
  • A second trial preoperatively randomly assigned patients with one to three potentially resectable colorectal hepatic metastases to either no further therapy or postoperative hepatic arterial floxuridine plus systemic 5-FU.
  • Among those randomly assigned patients, 27% were deemed ineligible at the time of surgery, leaving only 75 patients evaluable for recurrence and survival.
  • While liver recurrence was decreased, median or 4-year survival was not significantly different between the patient groups.
  • Additional studies are required to evaluate this treatment approach and to determine whether more effective systemic combination chemotherapy alone would provide results similar to hepatic intra-arterial therapy plus systemic treatment.

    Intra-arterial chemotherapy after liver resection

    Hepatic intra-arterial chemotherapy with floxuridine for liver metastases has produced higher overall response rates but no consistent improvement in survival when compared with systemic chemotherapy.

    Controversy regarding the efficacy of regional chemotherapy was the basis of a large multicenter phase III trial (Leuk-9481) (NCT00002716) of hepatic arterial infusion versus systemic chemotherapy. The use of combination intra-arterial chemotherapy with hepatic radiation therapy, especially employing focal radiation of metastatic lesions, is under evaluation.

    Increased local toxic effects after hepatic infusional therapy are seen, including liver function abnormalities and fatal biliary sclerosis.

    Current Clinical Trials

    Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

    ReferenceSection

  • Wanebo HJ, Koness RJ, Vezeridis MP, et al.: Pelvic resection of recurrent rectal cancer. Ann Surg 220 (4): 586-95; discussion 595-7, 1994.
  • Girard P, Ducreux M, Baldeyrou P, et al.: Surgery for lung metastases from colorectal cancer: analysis of prognostic factors. J Clin Oncol 14 (7): 2047-53, 1996.
  • McAfee MK, Allen MS, Trastek VF, et al.: Colorectal lung metastases: results of surgical excision. Ann Thorac Surg 53 (5): 780-5; discussion 785-6, 1992.
  • Headrick JR, Miller DL, Nagorney DM, et al.: Surgical treatment of hepatic and pulmonary metastases from colon cancer. Ann Thorac Surg 71 (3): 975-9; discussion 979-80, 2001.
  • Tepper JE, O'Connell M, Donna H, et al.: Analysis of surgical salvage after failure of primary therapy in rectal cancer: results from INT 0114. [Abstract] Proceedings of the American Society of Clinical Oncology 21: A-507, 2002.
  • Rodriguez-Bigas MA, Herrera L, Petrelli NJ: Surgery for recurrent rectal adenocarcinoma in the presence of hydronephrosis. Am J Surg 164 (1): 18-21, 1992.
  • Ogunbiyi OA, McKenna K, Birnbaum EH, et al.: Aggressive surgical management of recurrent rectal cancer--is it worthwhile? Dis Colon Rectum 40 (2): 150-5, 1997.
  • Vermaas M, Ferenschild FT, Verhoef C, et al.: Total pelvic exenteration for primary locally advanced and locally recurrent rectal cancer. Eur J Surg Oncol 33 (4): 452-8, 2007.
  • Lowy AM, Rich TA, Skibber JM, et al.: Preoperative infusional chemoradiation, selective intraoperative radiation, and resection for locally advanced pelvic recurrence of colorectal adenocarcinoma. Ann Surg 223 (2): 177-85, 1996.
  • Valentini V, Morganti AG, De Franco A, et al.: Chemoradiation with or without intraoperative radiation therapy in patients with locally recurrent rectal carcinoma: prognostic factors and long term outcome. Cancer 86 (12): 2612-24, 1999.
  • Haddock MG, Gunderson LL, Nelson H, et al.: Intraoperative irradiation for locally recurrent colorectal cancer in previously irradiated patients. Int J Radiat Oncol Biol Phys 49 (5): 1267-74, 2001.
  • Petrelli N, Herrera L, Rustum Y, et al.: A prospective randomized trial of 5-fluorouracil versus 5-fluorouracil and high-dose leucovorin versus 5-fluorouracil and methotrexate in previously untreated patients with advanced colorectal carcinoma. J Clin Oncol 5 (10): 1559-65, 1987.
  • Petrelli N, Douglass HO, Herrera L, et al.: The modulation of fluorouracil with leucovorin in metastatic colorectal carcinoma: a prospective randomized phase III trial. Gastrointestinal Tumor Study Group. J Clin Oncol 7 (10): 1419-26, 1989.
  • Scheithauer W, Rosen H, Kornek GV, et al.: Randomised comparison of combination chemotherapy plus supportive care with supportive care alone in patients with metastatic colorectal cancer. BMJ 306 (6880): 752-5, 1993.
  • Expectancy or primary chemotherapy in patients with advanced asymptomatic colorectal cancer: a randomized trial. Nordic Gastrointestinal Tumor Adjuvant Therapy Group. J Clin Oncol 10 (6): 904-11, 1992.
  • Buyse M, Thirion P, Carlson RW, et al.: Relation between tumour response to first-line chemotherapy and survival in advanced colorectal cancer: a meta-analysis. Meta-Analysis Group in Cancer. Lancet 356 (9227): 373-8, 2000.
  • Leichman CG, Fleming TR, Muggia FM, et al.: Phase II study of fluorouracil and its modulation in advanced colorectal cancer: a Southwest Oncology Group study. J Clin Oncol 13 (6): 1303-11, 1995.
  • Saltz LB, Cox JV, Blanke C, et al.: Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N Engl J Med 343 (13): 905-14, 2000.
  • de Gramont A, Figer A, Seymour M, et al.: Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 18 (16): 2938-47, 2000.
  • Douillard JY, Cunningham D, Roth AD, et al.: Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 355 (9209): 1041-7, 2000.
  • Sanoff HK, Sargent DJ, Campbell ME, et al.: Five-year data and prognostic factor analysis of oxaliplatin and irinotecan combinations for advanced colorectal cancer: N9741. J Clin Oncol 26 (35): 5721-7, 2008.
  • Tournigand C, André T, Achille E, et al.: FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 22 (2): 229-37, 2004.
  • Colucci G, Gebbia V, Paoletti G, et al.: Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: a multicenter study of the Gruppo Oncologico Dell'Italia Meridionale. J Clin Oncol 23 (22): 4866-75, 2005.
  • Fuchs CS, Marshall J, Mitchell E, et al.: Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C Study. J Clin Oncol 25 (30): 4779-86, 2007.
  • Van Cutsem E, Twelves C, Cassidy J, et al.: Oral capecitabine compared with intravenous fluorouracil plus leucovorin in patients with metastatic colorectal cancer: results of a large phase III study. J Clin Oncol 19 (21): 4097-106, 2001.
  • Hoff PM, Ansari R, Batist G, et al.: Comparison of oral capecitabine versus intravenous fluorouracil plus leucovorin as first-line treatment in 605 patients with metastatic colorectal cancer: results of a randomized phase III study. J Clin Oncol 19 (8): 2282-92, 2001.
  • Díaz-Rubio E, Tabernero J, Gómez-España A, et al.: Phase III study of capecitabine plus oxaliplatin compared with continuous-infusion fluorouracil plus oxaliplatin as first-line therapy in metastatic colorectal cancer: final report of the Spanish Cooperative Group for the Treatment of Digestive Tumors Trial. J Clin Oncol 25 (27): 4224-30, 2007.
  • Porschen R, Arkenau HT, Kubicka S, et al.: Phase III study of capecitabine plus oxaliplatin compared with fluorouracil and leucovorin plus oxaliplatin in metastatic colorectal cancer: a final report of the AIO Colorectal Study Group. J Clin Oncol 25 (27): 4217-23, 2007.
  • Hurwitz H, Fehrenbacher L, Novotny W, et al.: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350 (23): 2335-42, 2004.
  • Saltz LB, Clarke S, Díaz-Rubio E, et al.: Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 26 (12): 2013-9, 2008.
  • Cassidy J, Clarke S, Díaz-Rubio E, et al.: Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer. J Clin Oncol 26 (12): 2006-12, 2008.
  • Giantonio BJ, Catalano PJ, Meropol NJ, et al.: High-dose bevacizumab improves survival when combined with FOLFOX4 in previously treated advanced colorectal cancer: results from the Eastern Cooperative Oncology Group (ECOG) study E3200. [Abstract] J Clin Oncol 23 (Suppl 16): A-2, 1s, 2005.
  • Loupakis F, Cremolini C, Masi G, et al.: Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med 371 (17): 1609-18, 2014.
  • Cunningham D, Humblet Y, Siena S, et al.: Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351 (4): 337-45, 2004.
  • Van Cutsem E, Köhne CH, Hitre E, et al.: Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360 (14): 1408-17, 2009.
  • Tol J, Koopman M, Cats A, et al.: Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 360 (6): 563-72, 2009.
  • Maughan TS, Adams RA, Smith CG, et al.: Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet 377 (9783): 2103-14, 2011.
  • Adams RA, Meade AM, Seymour MT, et al.: Intermittent versus continuous oxaliplatin and fluoropyrimidine combination chemotherapy for first-line treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet Oncol 12 (7): 642-53, 2011.
  • Van Cutsem E, Tabernero J, Lakomy R, et al.: Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 30 (28): 3499-506, 2012.
  • Tabernero J, Yoshino T, Cohn AL, et al.: Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol 16 (5): 499-508, 2015.
  • Van Cutsem E, Peeters M, Siena S, et al.: Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 25 (13): 1658-64, 2007.
  • Douillard JY, Siena S, Cassidy J, et al.: Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 28 (31): 4697-705, 2010.
  • Douillard JY, Oliner KS, Siena S, et al.: Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 369 (11): 1023-34, 2013.
  • Hecht JR, Mitchell E, Chidiac T, et al.: A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 27 (5): 672-80, 2009.
  • Peeters M, Price TJ, Cervantes A, et al.: Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol 28 (31): 4706-13, 2010.
  • Heinemann V, von Weikersthal LF, Decker T, et al.: FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 15 (10): 1065-75, 2014.
  • Venook AP, Niedzwiecki D, Lenz HJ, et al.: CALGB/SWOG 80405: Phase III trial of irinotecan/5-FU/leucovorin (FOLFIRI) or oxaliplatin/5-FU/leucovorin (mFOLFOX6) with bevacizumab (BV) or cetuximab (CET) for patients (pts) with KRAS wild-type (wt) untreated metastatic adenocarcinoma of the colon or rectum (MCRC). [Abstract] J Clin Oncol 32 (Suppl 5): A-LBA3, 2014.
  • Stintzing S, Modest DP, Rossius L, et al.: FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab for metastatic colorectal cancer (FIRE-3): a post-hoc analysis of tumour dynamics in the final RAS wild-type subgroup of this randomised open-label phase 3 trial. Lancet Oncol 17 (10): 1426-1434, 2016.
  • Modest DP, Stintzing S, von Weikersthal LF, et al.: Impact of Subsequent Therapies on Outcome of the FIRE-3/AIO KRK0306 Trial: First-Line Therapy With FOLFIRI Plus Cetuximab or Bevacizumab in Patients With KRAS Wild-Type Tumors in Metastatic Colorectal Cancer. J Clin Oncol 33 (32): 3718-26, 2015.
  • Grothey A, Sobrero AF, Siena S, et al.: Results of a phase III randomized, double-blind, placebo-controlled, multicenter trial (CORRECT) of regorafenib plus best supportive care (BSC) versus placebo plus BSC in patients (pts) with metastatic colorectal cancer (mCRC) who have progressed after standard therapies. [Abstract] J Clin Oncol 30 (Suppl 4): A-LBA385, 2012.
  • Grothey A, Van Cutsem E, Sobrero A, et al.: Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381 (9863): 303-12, 2013.
  • Mayer RJ, Van Cutsem E, Falcone A, et al.: Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N Engl J Med 372 (20): 1909-19, 2015.
  • Rothenberg ML, Eckardt JR, Kuhn JG, et al.: Phase II trial of irinotecan in patients with progressive or rapidly recurrent colorectal cancer. J Clin Oncol 14 (4): 1128-35, 1996.
  • Conti JA, Kemeny NE, Saltz LB, et al.: Irinotecan is an active agent in untreated patients with metastatic colorectal cancer. J Clin Oncol 14 (3): 709-15, 1996.
  • Rougier P, Van Cutsem E, Bajetta E, et al.: Randomised trial of irinotecan versus fluorouracil by continuous infusion after fluorouracil failure in patients with metastatic colorectal cancer. Lancet 352 (9138): 1407-12, 1998.
  • Cunningham D, Pyrhönen S, James RD, et al.: Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. Lancet 352 (9138): 1413-8, 1998.
  • Rothenberg ML, Oza AM, Bigelow RH, et al.: Superiority of oxaliplatin and fluorouracil-leucovorin compared with either therapy alone in patients with progressive colorectal cancer after irinotecan and fluorouracil-leucovorin: interim results of a phase III trial. J Clin Oncol 21 (11): 2059-69, 2003.
  • Valone FH, Friedman MA, Wittlinger PS, et al.: Treatment of patients with advanced colorectal carcinomas with fluorouracil alone, high-dose leucovorin plus fluorouracil, or sequential methotrexate, fluorouracil, and leucovorin: a randomized trial of the Northern California Oncology Group. J Clin Oncol 7 (10): 1427-36, 1989.
  • Erlichman C, Fine S, Wong A, et al.: A randomized trial of fluorouracil and folinic acid in patients with metastatic colorectal carcinoma. J Clin Oncol 6 (3): 469-75, 1988.
  • Doroshow JH, Multhauf P, Leong L, et al.: Prospective randomized comparison of fluorouracil versus fluorouracil and high-dose continuous infusion leucovorin calcium for the treatment of advanced measurable colorectal cancer in patients previously unexposed to chemotherapy. J Clin Oncol 8 (3): 491-501, 1990.
  • Poon MA, O'Connell MJ, Wieand HS, et al.: Biochemical modulation of fluorouracil with leucovorin: confirmatory evidence of improved therapeutic efficacy in advanced colorectal cancer. J Clin Oncol 9 (11): 1967-72, 1991.
  • Wadler S, Lembersky B, Atkins M, et al.: Phase II trial of fluorouracil and recombinant interferon alfa-2a in patients with advanced colorectal carcinoma: an Eastern Cooperative Oncology Group study. J Clin Oncol 9 (10): 1806-10, 1991.
  • Grem JL, Jordan E, Robson ME, et al.: Phase II study of fluorouracil, leucovorin, and interferon alfa-2a in metastatic colorectal carcinoma. J Clin Oncol 11 (9): 1737-45, 1993.
  • Wong CS, Cummings BJ, Brierley JD, et al.: Treatment of locally recurrent rectal carcinoma--results and prognostic factors. Int J Radiat Oncol Biol Phys 40 (2): 427-35, 1998.
  • Crane CH, Janjan NA, Abbruzzese JL, et al.: Effective pelvic symptom control using initial chemoradiation without colostomy in metastatic rectal cancer. Int J Radiat Oncol Biol Phys 49 (1): 107-16, 2001.
  • Baron TH: Expandable metal stents for the treatment of cancerous obstruction of the gastrointestinal tract. N Engl J Med 344 (22): 1681-7, 2001.
  • Power DG, Healey-Bird BR, Kemeny NE: Regional chemotherapy for liver-limited metastatic colorectal cancer. Clin Colorectal Cancer 7 (4): 247-59, 2008.
  • Khatri VP, Chee KG, Petrelli NJ: Modern multimodality approach to hepatic colorectal metastases: solutions and controversies. Surg Oncol 16 (1): 71-83, 2007.
  • Pawlik TM, Choti MA: Surgical therapy for colorectal metastases to the liver. J Gastrointest Surg 11 (8): 1057-77, 2007.
  • Adson MA, van Heerden JA, Adson MH, et al.: Resection of hepatic metastases from colorectal cancer. Arch Surg 119 (6): 647-51, 1984.
  • Gayowski TJ, Iwatsuki S, Madariaga JR, et al.: Experience in hepatic resection for metastatic colorectal cancer: analysis of clinical and pathologic risk factors. Surgery 116 (4): 703-10; discussion 710-1, 1994.
  • Hughes KS, Simon R, Songhorabodi S, et al.: Resection of the liver for colorectal carcinoma metastases: a multi-institutional study of patterns of recurrence. Surgery 100 (2): 278-84, 1986.
  • Schlag P, Hohenberger P, Herfarth C: Resection of liver metastases in colorectal cancer--competitive analysis of treatment results in synchronous versus metachronous metastases. Eur J Surg Oncol 16 (4): 360-5, 1990.
  • Rosen CB, Nagorney DM, Taswell HF, et al.: Perioperative blood transfusion and determinants of survival after liver resection for metastatic colorectal carcinoma. Ann Surg 216 (4): 493-504; discussion 504-5, 1992.
  • Fong Y, Fortner J, Sun RL, et al.: Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 230 (3): 309-18; discussion 318-21, 1999.
  • Scheele J, Stangl R, Altendorf-Hofmann A: Hepatic metastases from colorectal carcinoma: impact of surgical resection on the natural history. Br J Surg 77 (11): 1241-6, 1990.
  • Scheele J, Stangl R, Altendorf-Hofmann A, et al.: Indicators of prognosis after hepatic resection for colorectal secondaries. Surgery 110 (1): 13-29, 1991.
  • Wagman LD, Kemeny MM, Leong L, et al.: A prospective, randomized evaluation of the treatment of colorectal cancer metastatic to the liver. J Clin Oncol 8 (11): 1885-93, 1990.
  • Coppa GF, Eng K, Ranson JH, et al.: Hepatic resection for metastatic colon and rectal cancer. An evaluation of preoperative and postoperative factors. Ann Surg 202 (2): 203-8, 1985.
  • Taylor M, Forster J, Langer B, et al.: A study of prognostic factors for hepatic resection for colorectal metastases. Am J Surg 173 (6): 467-71, 1997.
  • Jaeck D, Bachellier P, Guiguet M, et al.: Long-term survival following resection of colorectal hepatic metastases. Association Française de Chirurgie. Br J Surg 84 (7): 977-80, 1997.
  • Fernández-Trigo V, Shamsa F, Sugarbaker PH: Repeat liver resections from colorectal metastasis. Repeat Hepatic Metastases Registry. Surgery 117 (3): 296-304, 1995.
  • Weeks JC, Nelson H, Gelber S, et al.: Short-term quality-of-life outcomes following laparoscopic-assisted colectomy vs open colectomy for colon cancer: a randomized trial. JAMA 287 (3): 321-8, 2002.
  • Higgins GA, Amadeo JH, McElhinney J, et al.: Efficacy of prolonged intermittent therapy with combined 5-fluorouracil and methyl-CCNU following resection for carcinoma of the large bowel. A Veterans Administration Surgical Oncology Group report. Cancer 53 (1): 1-8, 1984.
  • Buyse M, Zeleniuch-Jacquotte A, Chalmers TC: Adjuvant therapy of colorectal cancer. Why we still don't know. JAMA 259 (24): 3571-8, 1988.
  • Laurie JA, Moertel CG, Fleming TR, et al.: Surgical adjuvant therapy of large-bowel carcinoma: an evaluation of levamisole and the combination of levamisole and fluorouracil. The North Central Cancer Treatment Group and the Mayo Clinic. J Clin Oncol 7 (10): 1447-56, 1989.
  • Moertel CG, Fleming TR, Macdonald JS, et al.: Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N Engl J Med 322 (6): 352-8, 1990.
  • Leonard GD, Brenner B, Kemeny NE: Neoadjuvant chemotherapy before liver resection for patients with unresectable liver metastases from colorectal carcinoma. J Clin Oncol 23 (9): 2038-48, 2005.
  • Rossi S, Buscarini E, Garbagnati F, et al.: Percutaneous treatment of small hepatic tumors by an expandable RF needle electrode. AJR Am J Roentgenol 170 (4): 1015-22, 1998.
  • Solbiati L, Livraghi T, Goldberg SN, et al.: Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients. Radiology 221 (1): 159-66, 2001.
  • Lencioni R, Goletti O, Armillotta N, et al.: Radio-frequency thermal ablation of liver metastases with a cooled-tip electrode needle: results of a pilot clinical trial. Eur Radiol 8 (7): 1205-11, 1998.
  • Curley SA, Izzo F, Delrio P, et al.: Radiofrequency ablation of unresectable primary and metastatic hepatic malignancies: results in 123 patients. Ann Surg 230 (1): 1-8, 1999.
  • Oshowo A, Gillams A, Harrison E, et al.: Comparison of resection and radiofrequency ablation for treatment of solitary colorectal liver metastases. Br J Surg 90 (10): 1240-3, 2003.
  • Livraghi T, Solbiati L, Meloni F, et al.: Percutaneous radiofrequency ablation of liver metastases in potential candidates for resection: the "test-of-time approach". Cancer 97 (12): 3027-35, 2003.
  • Pawlik TM, Izzo F, Cohen DS, et al.: Combined resection and radiofrequency ablation for advanced hepatic malignancies: results in 172 patients. Ann Surg Oncol 10 (9): 1059-69, 2003.
  • Kemeny N, Huang Y, Cohen AM, et al.: Hepatic arterial infusion of chemotherapy after resection of hepatic metastases from colorectal cancer. N Engl J Med 341 (27): 2039-48, 1999.
  • Kemeny MM, Adak S, Gray B, et al.: Combined-modality treatment for resectable metastatic colorectal carcinoma to the liver: surgical resection of hepatic metastases in combination with continuous infusion of chemotherapy--an intergroup study. J Clin Oncol 20 (6): 1499-505, 2002.
  • Kemeny N, Daly J, Reichman B, et al.: Intrahepatic or systemic infusion of fluorodeoxyuridine in patients with liver metastases from colorectal carcinoma. A randomized trial. Ann Intern Med 107 (4): 459-65, 1987.
  • Chang AE, Schneider PD, Sugarbaker PH, et al.: A prospective randomized trial of regional versus systemic continuous 5-fluorodeoxyuridine chemotherapy in the treatment of colorectal liver metastases. Ann Surg 206 (6): 685-93, 1987.
  • Rougier P, Laplanche A, Huguier M, et al.: Hepatic arterial infusion of floxuridine in patients with liver metastases from colorectal carcinoma: long-term results of a prospective randomized trial. J Clin Oncol 10 (7): 1112-8, 1992.
  • Kemeny N, Cohen A, Seiter K, et al.: Randomized trial of hepatic arterial floxuridine, mitomycin, and carmustine versus floxuridine alone in previously treated patients with liver metastases from colorectal cancer. J Clin Oncol 11 (2): 330-5, 1993.
  • Reappraisal of hepatic arterial infusion in the treatment of nonresectable liver metastases from colorectal cancer. Meta-Analysis Group in Cancer. J Natl Cancer Inst 88 (5): 252-8, 1996.
  • McGinn CJ, Lawrence TS: Clinical Results of the Combination of Radiation and Fluoropyrimidines in the Treatment of Intrahepatic Cancer. Semin Radiat Oncol 7 (4): 313-323, 1997.
  • 直肠癌治疗(PDQ®)

    最新更新日期:2020.01.29

    PDQ癌症信息定期评估和及时更新最新内容。这一部分会收录相关内容的最新信息(截至更新日期)。

    2019年新发病例和死亡病例均采用最新资料(摘自美国癌症学会,见参考文献1)。

    本章节的内容更新

    本章节的内容更新

    编辑对本部分内容进行了修改。

    本篇内容由PDQ成人治疗编委会进行撰写和维护,编委会独立于NCI。本篇内容的选取立场公正,不代表NCI和NIH任何政治观点。有关本篇内容的政策及编委会在PDQ维护中的作用等更多信息,请参考PDQ摘要以及PDQ®-NCI综合癌症数据库页面内容。

    Rectal Cancer Treatment (PDQ®)

    Changes to This Summary (01/29/2019)

    The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

    Updated statistics with estimated new cases and deaths for 2019 (cited American Cancer Society as reference 2).

    Editorial changes were made to this section.

    Editorial changes were made to this section.

    An editorial change was made to this section.

    This summary is written and maintained by the PDQ Adult Treatment Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® - NCI's Comprehensive Cancer Database pages.

    直肠癌治疗(PDQ®)

    About This PDQ Summary

    Purpose of This Summary

    This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of rectal cancer. It is intended as a resource to inform and assist clinicians who care for cancer patients. It does not provide formal guidelines or recommendations for making health care decisions.

    Reviewers and Updates

    This summary is reviewed regularly and updated as necessary by the PDQ Adult Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

    Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.
  • Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

    The lead reviewers for Rectal Cancer Treatment are:

  • Russell S. Berman, MD(纽约大学医学院)
  • Valerie Lee, MD(霍普金斯大学)
  • David P. Ryan, MD(麻省总医院)
  • Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

    Levels of Evidence

    Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Adult Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

    Permission to Use This Summary

    PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”

    The preferred citation for this PDQ summary is:

    PDQ® Adult Treatment Editorial Board. PDQ Rectal Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated . Available at: https://www.cancer.gov/types/colorectal/hp/rectal-treatment-pdq. Accessed . [PMID: 26389402]

    Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

    Disclaimer

    Based on the strength of the available evidence, treatment options may be described as either “standard” or “under clinical evaluation.” These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

    Contact Us

    More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s Email Us.

    Rectal Cancer Treatment (PDQ®)

    About This PDQ Summary

    Purpose of This Summary

    This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of rectal cancer. It is intended as a resource to inform and assist clinicians who care for cancer patients. It does not provide formal guidelines or recommendations for making health care decisions.

    Reviewers and Updates

    This summary is reviewed regularly and updated as necessary by the PDQ Adult Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

    Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.
  • Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

    The lead reviewers for Rectal Cancer Treatment are:

  • Russell S. Berman, MD (New York University School of Medicine)
  • Valerie Lee, MD (Johns Hopkins University)
  • David P. Ryan, MD (Massachusetts General Hospital)
  • Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

    Levels of Evidence

    Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Adult Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

    Permission to Use This Summary

    PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”

    The preferred citation for this PDQ summary is:

    PDQ® Adult Treatment Editorial Board. PDQ Rectal Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated . Available at: https://www.cancer.gov/types/colorectal/hp/rectal-treatment-pdq. Accessed . [PMID: 26389402]

    Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

    Disclaimer

    Based on the strength of the available evidence, treatment options may be described as either “standard” or “under clinical evaluation.” These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

    Contact Us

    More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s Email Us.

    < 1 2 3 4 5 6 7 8 9 10 >
    目录
    章 节
    直肠癌的基本信息 直肠癌的细胞学分类和病理学 直肠癌的临床分期 直肠癌的治疗方法 临床0期直肠癌的治疗 临床I期直肠癌的治疗 临床II和III期直肠癌的治疗 临床IV期和复发性直肠癌的治疗 最新更新日期:2020.01.29 About This PDQ Summary