你现在的位置: 首页 > 癌症医典(乳腺癌) > 乳腺癌治疗(成人)
中文版 / English
乳腺癌治疗(成人)(PDQ®)

乳腺癌的一般信息

这篇总结讨论了女性原发性乳腺上皮细胞癌。 乳房很少出现其他肿瘤如淋巴瘤、肉瘤或黑色素瘤的。 更多关于这些类型癌症的信息,请参阅以下PDQ总结。

  • 成人霍奇金淋巴瘤治疗
  • 成人软组织肉瘤治疗
  • 黑色素瘤治疗
  • 乳腺癌也可以发生在男性和儿童中,并且可能出现于妊娠期,但是它很少发生于这些人群。更多信息,请参阅以下PDQ总结:

  • 男性乳腺癌治疗
  • 妊娠期乳腺癌治疗
  • 儿童非常见癌症治疗
  • 发病率和死亡率

    2020年美国乳腺癌(仅女性)的估计的新发病例和死亡病例:

  • 新发病例:276,480。
  • 死亡例数:42,170。
  • 乳腺癌是美国女性最常见的非皮肤性癌症,且2020年估计有48,530例女性乳腺导管原位癌患者和276,480例浸润性乳腺癌患者。

    因此,不到六分之一的被诊断患有乳腺癌的女性死于该疾病。相比之下,据估计,2020年美国约有63,220名女性将死于肺癌。

    男性占乳腺癌病例和乳腺癌死亡的1%(更多信息,请参阅有关乳腺癌筛查的PDQ总结中的“特殊人群”部分内容)。

    广泛采用筛查可增加特定人群的乳腺癌发病率,并改变检测到的癌症特征,增加低风险癌症、癌前病变和导管原位癌(DCIS)的发病率。(更多信息,请参阅关于乳腺癌筛查的PDQ总结中的“乳腺组织病理评估”中的“导管原位癌(DCIS)”部分内容。) 来自美国

    和英国的人群研究

    表明,自20世纪70年代以来,DCIS和浸润性乳腺癌的发病率有所增加,这归因于绝经后激素治疗和乳腺X线筛查的广泛应用。 近十年中,女性绝经后激素使用受到了限制,乳腺癌的发病率有所下降,但未降到广泛应用乳房X线筛查之前的水平。

    解剖学

    女性乳房解剖学乳头和乳晕图示在乳房的外侧。淋巴结、腺叶、小叶、乳管和乳房内侧的其他部分也如图所示。

    危险因素

    对于大多数癌症来说,年龄增长是最重要的危险因素。其他乳腺癌的危险因素包括以下:

  • 家族健康史。
  • 主要遗传易感性。
  • BRCA1和BRCA2基因以及其他乳腺癌易感基因的胚系突变。
  • 酒精摄入。
  • 乳房组织密度(乳房X线)。
  • 雌性激素(内源性)。
  • 月经史(月经初潮早/绝经期推迟)。
  • 未生育。
  • 第一次生育时高龄。
  • 激素治疗史。
  • 雌性激素和黄体酮组合激素替代治疗。
  • 肥胖(绝经后)。
  • 乳腺癌个人史。
  • 良性乳腺疾病(BBD)个人史(增生性的BBD)
  • 乳房/胸部的射线暴露
  • 年龄相关的风险评估有助于有乳腺癌家族史女性的筛查策略的讨论和设计。

    在所有患有乳腺癌的女性中,5%到10%的可能存在BRCA1和BRCA2基因的胚系突变。

    特殊的BRCA1和BRCA2突变更常见于犹太祖系的女性。

    BRCA1和BRCA2突变的女性终生患乳腺癌的风险估计为40%至85%。有乳腺癌病史的突变基因携带者患对侧乳腺癌的风险增加,该风险可能高达每年5%。

    男性BRCA2突变携带者患乳腺癌的风险也会增加。

    BRCA1或BRCA2基因的突变也会增加卵巢癌

    或其他原发性癌症的患病风险。

    一旦BRCA1或BRCA2突变被确定,其他家庭成员可考虑进行基因咨询和检测。

    (更多信息,请参阅有关乳腺癌和妇产科癌症遗传学、乳腺癌预防和乳腺癌筛查的PDQ总结。)

    (更多有关增加乳腺癌风险的因素的信息,请参阅有关乳腺癌预防的PDQ总结。)

    保护性因素

    降低女性乳腺癌患病风险的保护性因素和干预措施包括以下方面:

  • 雌性激素使用(子宫切除后)。
  • 运动。
  • 早孕。
  • 母乳喂养。
  • 选择性雌激素受体调节剂(SERMs)。
  • 芳香化酶抑制剂或失活剂。
  • 降低风险的全乳切除术。
  • 降低风险的卵巢切除术或卵巢消融。
  • (更多关于降低乳腺癌风险的因素的信息,请参阅有关乳腺癌预防的PDQ总结。)

    筛查

    临床试验已证实,使用乳房X线检查对无症状的女性进行筛查,无论是否进行临床乳房检查,均可降低乳腺癌的死亡率。 (更多信息,请参阅有关乳腺癌筛查的PDQ总结。)

    诊断

    患者评估

    当怀疑乳腺癌时,一般的患者管理包括以下方面:

  • 诊断的确定。
  • 疾病分期的评估。
  • 治疗的选择。
  • 以下检测和程序将被用于诊断乳腺癌:

  • 乳房X线成像。
  • 超声。
  • 乳房核磁共振成像(MRI),若存在临床指征,
  • 活检。
  • 对侧疾病

    病理上,乳腺癌可以是多中心性和双侧的疾病。双侧乳腺癌更常见于渗入性叶状癌患者中。在诊断后10年,对侧乳房发生原发性乳腺癌的风险在3%到10%之间,尽管内分泌治疗降低了这种风险。

    对侧乳腺癌与远期复发风险的增加相关。

    当BRCA1/BRCA2突变携带者在40岁前被诊断时,对侧乳腺癌的风险在随后的25年内能够达到约50%。

    患有乳腺癌的患者需在诊断时进行双侧的乳房X线检查,以排除同时发生的疾病。为了监测接受保乳手术的患者的同侧乳房的复发或对侧乳房的二次原发性癌症,患者术后需继续进行定期的乳房体格检查和乳房X线检查。

    MRI在对侧乳房的筛查和对接受保乳治疗的女性的监测中的作用日益显著。由于乳房X线检查可明确增加乳房隐匿病变的检出率,尽管没有随机对照试验的数据,但选择性使用MRI进行额外筛查的频率逐渐增加。由于MRI阳性病灶中只有25%的恶性肿瘤,因此建议在治疗前进行病理确认。 这种检出率的提高是否提升治疗效果还不得而知。

    预后和预测性因素

    乳腺癌通常是通过外科手术、放射治疗、化疗和激素治疗的各种组合来治疗的。 治疗的预后和选择可能受以下临床和病理特征的影响(基于常规组织学和免疫组织化学):

  • 患者的绝经期状态。
  • 疾病的分期。
  • 原发性肿瘤的分级。
  • 肿瘤的雌激素受体(ER)和黄体酮受体(PR)状态。
  • 人类上皮生长因子受体2(HER2/neu)过表达和/或扩增。
  • 组织学类型。乳腺癌有一系列的组织学类型分型,其中一些类型对预后有重要影响。 预后较好的组织学类型包括粘液性、髓质性和管状癌。
  • 乳腺癌分子分型的检测包括以下方面:

  • ER和PR状态检测。
  • HER2/neu受体状态检测。
  • 微阵列试验或反向转录-聚合酶链反应(例如,MammaPrint,Oncotype DX)检测基因谱。
  • 根据ER、PR和HER2/neu的检测结果,乳腺癌被归类为以下类型之一:

  • 激素受体阳性。
  • HER2/neu阳性。
  • 三阴性(ER、PR和HER2/neu阴性)。
  • ER、PR和HER2的状态在确定预后和预测内分泌治疗以及HER2靶向治疗的反应非常重要。美国临床肿瘤学会/美国病理学家学会的共识小组已经发布了相关指南,以帮助那些通过免疫组化来评估ER-PR状态和通过免疫组化与原位杂交技术来评估HER2状态所使用的测试的性能、解释和报告更加标准化。

    基因谱检测包括以下内容:

  • MammaPrint: 美国食品药品监督管理局批准的第一个基因谱测试是MammaPrint基因标签。 这种70基因标签将肿瘤分为高风险预后和低风险预后两个类别。
  • MINDACT(NCT00433589)试验(见下文)的目的是确定辅助化疗的临床作用和患者受益。
  • Oncotype DX: Oncotype DX 21基因测试是迄今为止临床验证最广泛的基因谱测试,且适用于激素受体阳性的乳腺癌。根据21个基因表达水平得出的21-基因复发的评分包括:
  • 复发评分<18:低风险。
  • 复发评分≥18且<31:中等风险。
  • 复发评分≥31:高风险。
  • 以下试验描述了早期乳腺癌中多基因检测的预后和预测价值:

  • 两项随机临床试验评估了Oncotype DX 21基因检测的的预后能力。
  • 20世纪80年代国家外科辅助乳房和肠道项目(NSABP B-14)试验将患者随机分配到接受他莫西芬治疗或安慰剂治疗组;他莫西芬的治疗结果改变了临床实践指南。
  • 668例患者的福尔马林固定石蜡包埋的组织被应用于此试验。使用他莫西芬治疗的低复发评分的患者的10年远期复发风险为7%,而中等复发评分的患者的10年远期复发风险为14%,高复发评分的患者的10年远期复发风险为31%(P<0.001)。
  • 一项基于社区的病例对照研究检验了该复发评分预测一组他莫西芬治疗的患者10年后死于乳腺癌率的能力,观察到了与NSABP B-14研究中患者类似的预后模式。
  • 一项前瞻-回顾性研究应用NSABP B-20试验中的他莫昔芬组与他莫昔芬联合化疗组的数据,对Oncotype Dx预测淋巴结阴性、ER阳性乳腺癌患者进行化疗获益的能力进行了评估。
  • 在NSABP B-20试验中,患者被随机分配单一他莫西芬治疗组,或同时接受他莫西芬和甲氨蝶呤与氟尿嘧啶(MF)或含MF的环磷酰胺(CMF)组。
  • 通过在高风险患者组中的他莫昔芬联合化疗药物,10年的无病生存率(DFS)从60%提高到88%,而在低复发评分组则没有观察到获益。
  • 在西南肿瘤组(SWOG-8814 [NCT00929591])试验的前瞻性-回顾性评估中,报道了相似的结果。该试验是在激素受体阳性、淋巴结阳性的、接受他莫昔芬联合/不联合环磷酰胺、阿霉素和氟尿嘧啶的绝经后患者中进行。
  • 然而,此分析中的样本量小,随访只有5年,并且需要考虑阳性淋巴结对预后的影响。
  • 值得注意的是,在被确定为有中等复发评分的患者中,这两项分析(NSABP B-20和S8814)对于任何具有结论性的预测分析都缺乏足够的证据。
  • 前瞻性随机临床试验TAILORx(NCT00310180)的结果表明,化疗对50岁以上、ER-PR阳性和淋巴结阴性、复发评分在11-25之间的乳腺癌患者无法带来实质性获益。
  • 在这项研究中,低风险评分被定义为小于11,中等风险评分为11到25,高风险评分为大于25。这些分界点与上述的分界点不同。
  • 这项研究发现低风险评分的患者在内分泌治疗5年后,复发率非常低。

  • 乳腺癌的5年iDFS为93.8%,9年无浸润性癌生存率(iDFS)为84.0%。
  • 乳腺癌远处复发的5年无复发率为99.3%,9年时为96.8%。
  • 乳腺癌远处或局部区域复发的5年无复发率为98.7%,9年时为95.0%。
  • 5年整体生存率为98.0%,9年时为93.7%。
  • 在TAILORx研究中,中等复发风险组(复发评分为11-25)中,6907名女性被随机分配到单一内分泌治疗组或内分泌治疗联合化疗组。

    其中,3399名单一内分泌治疗组的女性和3312名内分泌治疗联合化疗组的女性根据随机化的治疗进行分析。在中位随访时间90个月后,iDFS的差异、主要研究终点符合预先设定的非劣效标准(P>0.10,在835例事件发生后进行无差异检验),这表明与内分泌治疗联合化疗相比,内分泌治疗具有非劣效性。

  • 在这个人群中,单一内分泌治疗组的9年iDFS为83.3%,内分泌治疗联合化疗为84.3%(风险比[HR]为1.08;95%CI[CI]为0.94-1.24;P =0.26)。
  • [证据等级:1iiD]
  • 单一内分泌治疗组中的185例患者接受了化疗,608例内分泌治疗加化疗组的患者没有接受拟定的化疗。根据实际接受治疗的情况分析,iDFS的HR为1.14(95%CI为0.99-1.31;P=0.06)。
  • 所检验的其他终点(无远处乳腺癌复发率、无局部和远处复发率以及OS)的结果在两个治疗组之间相似,且在P<0.10下没有显著差异。
  • 治疗分配与年龄(P=0.03)在iDFS方面有显著的相互作用,这表明化疗可能对50岁以下、复发评分在11至25岁间的女性有益。
  • TAILORx的二次分析表明,在复发评分至少为11的女性中,临床风险的整合(根据肿瘤大小和分级评估)将预后信息增加到复发评分中;然而,临床风险对化疗的获益不具有预测性。
  • 此二次分析进一步探讨了年龄和化疗获益之间的相互作用。在50岁及以下的女性中,复发评分为16至20且临床风险高时,化疗患者的远处复发率较低;在复发评分为21至25时,无论临床风险如何,化疗的远处复发率均较低。
  • 大多数女性接受他莫西芬作为她们的内分泌治疗。任何观察到的化疗获益是否可归因于卵巢功能抑制,以及它们能否通过内分泌治疗实现尚不确定。
  • MINDACT(NCT00433589)临床试验检测了将MammaPrint基因组风险添加到临床风险分类中是否能够指导淋巴结阴性或1到3枚淋巴结阳性疾病的女性进行更适当的化疗选择。
  • [证据等级:3iiiDii]与TAILORx研究只有激素受体阳性患者不同,此临床试验包括了激素受体阴性的患者。在这项前瞻性试验中,具有基因组和临床高风险分类的女性接受了化疗,而基因组和临床低风险分类的女性则未接受化疗。 结果不一致的参与者(临床高风险和基因组低风险分类,或临床低风险和基因组高风险分类)被随机分配接受或不接受化疗。 共有1550名临床风险高、基因组风险低的女性和592名临床风险低、基因组风险高的女性被随机分配接受或不接受化疗。该研究的主要目标是确定临床风险高但基因组风险低的未接受化疗的患者的无远处转移的5年生存率(主要研究终点)是否为92%或更低(非劣效设计)。
  • 该组中观察到的率为94.7%(95%CI为92.5%-96.2%),因此已达到研究终点。然而,在临床风险高但基因组风险低的患者中,接受化疗组的5年无远处转移生存率比未接受化疗组高1.5%,尽管该研究没有检测出这两组之间的差异(化疗组vs.无化疗组的HR为0.78;95%CI为0.50-1.21;P =0.27)。
  • 低临床风险且高基因组风险组的患者表现治疗效果良好,并且几乎没有证据表明化疗对该组有益(无远处转移的5年生存率,化疗组为95.8%,未化疗组为95.0%;HR为1.17;95% CI为0.59-2.28;P=0.66)。
  • 来自前瞻性随机临床试验RxPONDER(NCT01272037)的结果,将有助于决定使用内分泌治疗治疗的ER阳性、淋巴结阳性的、进行内分泌治疗的和复发评分低于25的早期乳腺癌患者是否受益于辅助化疗。

    许多其他基于基因的检测可能指导早期乳腺癌患者的治疗决策(例如,Microarray50预测因子分析[PAM50],复发风险[ROR]评分,EndoPredict,乳腺癌指数)。

    虽然某些罕见的遗传突变,如BRCA1和BRCA2突变,易使女性患上乳腺癌,但BRCA1/BRCA2突变携带者患乳腺癌的预后数据是相互矛盾的。这些女性患对侧乳腺癌的风险更大。 (更多信息,请参阅乳腺癌和妇产癌症PDQ遗传学总结中的BRCA1和BRCA2相关的乳腺癌预后的部分内容。)

    治疗后考虑

    激素替代治疗

    慎重考虑后,有严重症状的患者可以接受激素替代治疗。更多信息,请参阅以下PDQ总结:

  • 乳腺癌预防
  • 潮热和夜间盗汗
  • 相关总结

    其他包含与乳腺癌相关信息的PDQ总结包括以下内容:

  • 乳腺癌预防
  • 乳腺癌筛查
  • 妊娠期乳腺癌治疗
  • 乳腺和妇科癌症遗传学
  • 男性乳腺癌治疗
  • 非常见儿童癌症治疗(儿童乳腺癌)
  • 参考文献

  • American Cancer Society: Cancer Facts and Figures 2020. Atlanta, Ga: American Cancer Society, 2020. Available online. Last accessed January 17, 2020.
  • Altekruse SF, Kosary CL, Krapcho M, et al.: SEER Cancer Statistics Review, 1975-2007. Bethesda, Md: National Cancer Institute, 2010. Also available online. Last accessed December 12, 2019.
  • Johnson A, Shekhdar J: Breast cancer incidence: what do the figures mean? J Eval Clin Pract 11 (1): 27-31, 2005.
  • Haas JS, Kaplan CP, Gerstenberger EP, et al.: Changes in the use of postmenopausal hormone therapy after the publication of clinical trial results. Ann Intern Med 140 (3): 184-8, 2004.
  • Colditz GA, Kaphingst KA, Hankinson SE, et al.: Family history and risk of breast cancer: nurses' health study. Breast Cancer Res Treat 133 (3): 1097-104, 2012.
  • Malone KE, Daling JR, Doody DR, et al.: Family history of breast cancer in relation to tumor characteristics and mortality in a population-based study of young women with invasive breast cancer. Cancer Epidemiol Biomarkers Prev 20 (12): 2560-71, 2011.
  • Cybulski C, Wokołorczyk D, Jakubowska A, et al.: Risk of breast cancer in women with a CHEK2 mutation with and without a family history of breast cancer. J Clin Oncol 29 (28): 3747-52, 2011.
  • Goodwin PJ, Phillips KA, West DW, et al.: Breast cancer prognosis in BRCA1 and BRCA2 mutation carriers: an International Prospective Breast Cancer Family Registry population-based cohort study. J Clin Oncol 30 (1): 19-26, 2012.
  • Mavaddat N, Barrowdale D, Andrulis IL, et al.: Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev 21 (1): 134-47, 2012.
  • Razzaghi H, Troester MA, Gierach GL, et al.: Mammographic density and breast cancer risk in White and African American Women. Breast Cancer Res Treat 135 (2): 571-80, 2012.
  • Key TJ, Appleby PN, Reeves GK, et al.: Circulating sex hormones and breast cancer risk factors in postmenopausal women: reanalysis of 13 studies. Br J Cancer 105 (5): 709-22, 2011.
  • Kaaks R, Rinaldi S, Key TJ, et al.: Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr Relat Cancer 12 (4): 1071-82, 2005.
  • Kaaks R, Berrino F, Key T, et al.: Serum sex steroids in premenopausal women and breast cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC). J Natl Cancer Inst 97 (10): 755-65, 2005.
  • Collaborative Group on Hormonal Factors in Breast Cancer: Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol 13 (11): 1141-51, 2012.
  • Ritte R, Lukanova A, Tjønneland A, et al.: Height, age at menarche and risk of hormone receptor-positive and -negative breast cancer: a cohort study. Int J Cancer 132 (11): 2619-29, 2013.
  • Wolin KY, Carson K, Colditz GA: Obesity and cancer. Oncologist 15 (6): 556-65, 2010.
  • Kotsopoulos J, Chen WY, Gates MA, et al.: Risk factors for ductal and lobular breast cancer: results from the nurses' health study. Breast Cancer Res 12 (6): R106, 2010.
  • Goldacre MJ, Abisgold JD, Yeates DG, et al.: Benign breast disease and subsequent breast cancer: English record linkage studies. J Public Health (Oxf) 32 (4): 565-71, 2010.
  • Kabat GC, Jones JG, Olson N, et al.: A multi-center prospective cohort study of benign breast disease and risk of subsequent breast cancer. Cancer Causes Control 21 (6): 821-8, 2010.
  • Worsham MJ, Raju U, Lu M, et al.: Risk factors for breast cancer from benign breast disease in a diverse population. Breast Cancer Res Treat 118 (1): 1-7, 2009.
  • Travis LB, Hill DA, Dores GM, et al.: Breast cancer following radiotherapy and chemotherapy among young women with Hodgkin disease. JAMA 290 (4): 465-75, 2003.
  • Claus EB, Risch N, Thompson WD: Autosomal dominant inheritance of early-onset breast cancer. Implications for risk prediction. Cancer 73 (3): 643-51, 1994.
  • Gail MH, Brinton LA, Byar DP, et al.: Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 81 (24): 1879-86, 1989.
  • Blackwood MA, Weber BL: BRCA1 and BRCA2: from molecular genetics to clinical medicine. J Clin Oncol 16 (5): 1969-77, 1998.
  • Offit K, Gilewski T, McGuire P, et al.: Germline BRCA1 185delAG mutations in Jewish women with breast cancer. Lancet 347 (9016): 1643-5, 1996.
  • Frank TS, Manley SA, Olopade OI, et al.: Sequence analysis of BRCA1 and BRCA2: correlation of mutations with family history and ovarian cancer risk. J Clin Oncol 16 (7): 2417-25, 1998.
  • Cancer risks in BRCA2 mutation carriers. The Breast Cancer Linkage Consortium. J Natl Cancer Inst 91 (15): 1310-6, 1999.
  • Ford D, Easton DF, Bishop DT, et al.: Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet 343 (8899): 692-5, 1994.
  • Biesecker BB, Boehnke M, Calzone K, et al.: Genetic counseling for families with inherited susceptibility to breast and ovarian cancer. JAMA 269 (15): 1970-4, 1993.
  • Berry DA, Parmigiani G, Sanchez J, et al.: Probability of carrying a mutation of breast-ovarian cancer gene BRCA1 based on family history. J Natl Cancer Inst 89 (3): 227-38, 1997.
  • Hoskins KF, Stopfer JE, Calzone KA, et al.: Assessment and counseling for women with a family history of breast cancer. A guide for clinicians. JAMA 273 (7): 577-85, 1995.
  • Statement of the American Society of Clinical Oncology: genetic testing for cancer susceptibility, Adopted on February 20, 1996. J Clin Oncol 14 (5): 1730-6; discussion 1737-40, 1996.
  • Anderson GL, Limacher M, Assaf AR, et al.: Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial. JAMA 291 (14): 1701-12, 2004.
  • LaCroix AZ, Chlebowski RT, Manson JE, et al.: Health outcomes after stopping conjugated equine estrogens among postmenopausal women with prior hysterectomy: a randomized controlled trial. JAMA 305 (13): 1305-14, 2011.
  • Anderson GL, Chlebowski RT, Aragaki AK, et al.: Conjugated equine oestrogen and breast cancer incidence and mortality in postmenopausal women with hysterectomy: extended follow-up of the Women's Health Initiative randomised placebo-controlled trial. Lancet Oncol 13 (5): 476-86, 2012.
  • Bernstein L, Henderson BE, Hanisch R, et al.: Physical exercise and reduced risk of breast cancer in young women. J Natl Cancer Inst 86 (18): 1403-8, 1994.
  • Thune I, Brenn T, Lund E, et al.: Physical activity and the risk of breast cancer. N Engl J Med 336 (18): 1269-75, 1997.
  • Adams-Campbell LL, Rosenberg L, Rao RS, et al.: Strenuous physical activity and breast cancer risk in African-American women. J Natl Med Assoc 93 (7-8): 267-75, 2001 Jul-Aug.
  • Kampert JB, Whittemore AS, Paffenbarger RS: Combined effect of childbearing, menstrual events, and body size on age-specific breast cancer risk. Am J Epidemiol 128 (5): 962-79, 1988.
  • Pike MC, Krailo MD, Henderson BE, et al.: 'Hormonal' risk factors, 'breast tissue age' and the age-incidence of breast cancer. Nature 303 (5920): 767-70, 1983.
  • Lambe M, Hsieh C, Trichopoulos D, et al.: Transient increase in the risk of breast cancer after giving birth. N Engl J Med 331 (1): 5-9, 1994.
  • Col: Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet 360 (9328): 187-95, 2002.
  • Cuzick J, Sestak I, Bonanni B, et al.: Selective oestrogen receptor modulators in prevention of breast cancer: an updated meta-analysis of individual participant data. Lancet 381 (9880): 1827-34, 2013.
  • Goss PE, Ingle JN, Alés-Martínez JE, et al.: Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med 364 (25): 2381-91, 2011.
  • Cuzick J, Sestak I, Forbes JF, et al.: Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): an international, double-blind, randomised placebo-controlled trial. Lancet 383 (9922): 1041-8, 2014.
  • Hartmann LC, Schaid DJ, Woods JE, et al.: Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. N Engl J Med 340 (2): 77-84, 1999.
  • Rebbeck TR, Levin AM, Eisen A, et al.: Breast cancer risk after bilateral prophylactic oophorectomy in BRCA1 mutation carriers. J Natl Cancer Inst 91 (17): 1475-9, 1999.
  • Kauff ND, Satagopan JM, Robson ME, et al.: Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 346 (21): 1609-15, 2002.
  • Rebbeck TR, Lynch HT, Neuhausen SL, et al.: Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. N Engl J Med 346 (21): 1616-22, 2002.
  • Kauff ND, Domchek SM, Friebel TM, et al.: Risk-reducing salpingo-oophorectomy for the prevention of BRCA1- and BRCA2-associated breast and gynecologic cancer: a multicenter, prospective study. J Clin Oncol 26 (8): 1331-7, 2008.
  • Rosen PP, Groshen S, Kinne DW, et al.: Factors influencing prognosis in node-negative breast carcinoma: analysis of 767 T1N0M0/T2N0M0 patients with long-term follow-up. J Clin Oncol 11 (11): 2090-100, 1993.
  • Abbott A, Rueth N, Pappas-Varco S, et al.: Perceptions of contralateral breast cancer: an overestimation of risk. Ann Surg Oncol 18 (11): 3129-36, 2011.
  • Nichols HB, Berrington de González A, Lacey JV, et al.: Declining incidence of contralateral breast cancer in the United States from 1975 to 2006. J Clin Oncol 29 (12): 1564-9, 2011.
  • Heron DE, Komarnicky LT, Hyslop T, et al.: Bilateral breast carcinoma: risk factors and outcomes for patients with synchronous and metachronous disease. Cancer 88 (12): 2739-50, 2000.
  • Graeser MK, Engel C, Rhiem K, et al.: Contralateral breast cancer risk in BRCA1 and BRCA2 mutation carriers. J Clin Oncol 27 (35): 5887-92, 2009.
  • Garber JE, Golshan M: Contralateral breast cancer in BRCA1/BRCA2 mutation carriers: the story of the other side. J Clin Oncol 27 (35): 5862-4, 2009.
  • Lehman CD, Gatsonis C, Kuhl CK, et al.: MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med 356 (13): 1295-303, 2007.
  • Solin LJ, Orel SG, Hwang WT, et al.: Relationship of breast magnetic resonance imaging to outcome after breast-conservation treatment with radiation for women with early-stage invasive breast carcinoma or ductal carcinoma in situ. J Clin Oncol 26 (3): 386-91, 2008.
  • Morrow M: Magnetic resonance imaging in the breast cancer patient: curb your enthusiasm. J Clin Oncol 26 (3): 352-3, 2008.
  • Simpson JF, Gray R, Dressler LG, et al.: Prognostic value of histologic grade and proliferative activity in axillary node-positive breast cancer: results from the Eastern Cooperative Oncology Group Companion Study, EST 4189. J Clin Oncol 18 (10): 2059-69, 2000.
  • Rosen PP, Groshen S, Kinne DW: Prognosis in T2N0M0 stage I breast carcinoma: a 20-year follow-up study. J Clin Oncol 9 (9): 1650-61, 1991.
  • Diab SG, Clark GM, Osborne CK, et al.: Tumor characteristics and clinical outcome of tubular and mucinous breast carcinomas. J Clin Oncol 17 (5): 1442-8, 1999.
  • Rakha EA, Lee AH, Evans AJ, et al.: Tubular carcinoma of the breast: further evidence to support its excellent prognosis. J Clin Oncol 28 (1): 99-104, 2010.
  • Sørlie T, Perou CM, Tibshirani R, et al.: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98 (19): 10869-74, 2001.
  • Wolff AC, Hammond MEH, Allison KH, et al.: Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J Clin Oncol 36 (20): 2105-2122, 2018.
  • Hammond ME, Hayes DF, Dowsett M, et al.: American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Arch Pathol Lab Med 134 (6): 907-22, 2010.
  • Buyse M, Loi S, van't Veer L, et al.: Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98 (17): 1183-92, 2006.
  • Wittner BS, Sgroi DC, Ryan PD, et al.: Analysis of the MammaPrint breast cancer assay in a predominantly postmenopausal cohort. Clin Cancer Res 14 (10): 2988-93, 2008.
  • Mook S, Knauer M, Bueno-de-Mesquita JM, et al.: Metastatic potential of T1 breast cancer can be predicted by the 70-gene MammaPrint signature. Ann Surg Oncol 17 (5): 1406-13, 2010.
  • Ishitobi M, Goranova TE, Komoike Y, et al.: Clinical utility of the 70-gene MammaPrint profile in a Japanese population. Jpn J Clin Oncol 40 (6): 508-12, 2010.
  • Knauer M, Mook S, Rutgers EJ, et al.: The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat 120 (3): 655-61, 2010.
  • Fisher B, Jeong JH, Bryant J, et al.: Treatment of lymph-node-negative, oestrogen-receptor-positive breast cancer: long-term findings from National Surgical Adjuvant Breast and Bowel Project randomised clinical trials. Lancet 364 (9437): 858-68, 2004.
  • Paik S, Shak S, Tang G, et al.: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351 (27): 2817-26, 2004.
  • Habel LA, Shak S, Jacobs MK, et al.: A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res 8 (3): R25, 2006.
  • Mamounas EP, Tang G, Fisher B, et al.: Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: results from NSABP B-14 and NSABP B-20. J Clin Oncol 28 (10): 1677-83, 2010.
  • Paik S, Tang G, Shak S, et al.: Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24 (23): 3726-34, 2006.
  • Albain KS, Barlow WE, Shak S, et al.: Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 11 (1): 55-65, 2010.
  • Sparano JA, Gray RJ, Makower DF, et al.: Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N Engl J Med 379 (2): 111-121, 2018.
  • Sparano JA, Gray RJ, Makower DF, et al.: Prospective Validation of a 21-Gene Expression Assay in Breast Cancer. N Engl J Med 373 (21): 2005-14, 2015.
  • Sparano JA, Gray R: TAILORx: Questions Answered, Lessons Learned, and Remaining Knowledge Gaps. J Clin Oncol 37 (21): 1841-1842, 2019.
  • Cardoso F, van't Veer LJ, Bogaerts J, et al.: 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer. N Engl J Med 375 (8): 717-29, 2016.
  • Breast Cancer Treatment (Adult) (PDQ®)

    General Information About Breast Cancer

    This summary discusses primary epithelial breast cancers in women. The breast is rarely affected by other tumors such as lymphomas, sarcomas, or melanomas. Refer to the following PDQ summaries for more information on these cancer types:

  • Adult Hodgkin Lymphoma Treatment
  • Adult Soft Tissue Sarcoma Treatment
  • Melanoma Treatment
  • Breast cancer also affects men and children and may occur during pregnancy, although it is rare in these populations. Refer to the following PDQ summaries for more information:

  • Male Breast Cancer Treatment
  • Breast Cancer Treatment During Pregnancy
  • Unusual Cancers of Childhood Treatment
  • Incidence and Mortality

    Estimated new cases and deaths from breast cancer (women only) in the United States in 2020:

  • New cases: 276,480.
  • Deaths: 42,170.
  • Breast cancer is the most common noncutaneous cancer in U.S. women, with an estimated 48,530 cases of female breast ductal carcinoma in situ and 276,480 cases of invasive disease in 2020.

    Thus, fewer than one of six women diagnosed with breast cancer die of the disease. By comparison, it is estimated that about 63,220 American women will die of lung cancer in 2020.

    Men account for 1% of breast cancer cases and breast cancer deaths (refer to the Special Populations section in the PDQ summary on Breast Cancer Screening for more information).

    Widespread adoption of screening increases breast cancer incidence in a given population and changes the characteristics of cancers detected, with increased incidence of lower-risk cancers, premalignant lesions, and ductal carcinoma in situ (DCIS). (Refer to the Ductal carcinoma in situ (DCIS) section in the Pathologic Evaluation of Breast Tissue section in the PDQ summary on Breast Cancer Screening for more information.) Population studies from the United States

    and the United Kingdom

    demonstrate an increase in DCIS and invasive breast cancer incidence since the 1970s, attributable to the widespread adoption of both postmenopausal hormone therapy and screening mammography. In the last decade, women have refrained from using postmenopausal hormones, and breast cancer incidence has declined, but not to the levels seen before the widespread use of screening mammography.

    Anatomy

    Anatomy of the female breast. The nipple and areola are shown on the outside of the breast. The lymph nodes, lobes, lobules, ducts, and other parts of the inside of the breast are also shown.

    Risk Factors

    Increasing age is the most important risk factor for most cancers. Other risk factors for breast cancer include the following:

  • Family health history.
  • Major inheritance susceptibility.
  • Germline mutation of the BRCA1 and BRCA2 genes and other breast cancer susceptibility genes.
  • Alcohol intake.
  • Breast tissue density (mammographic).
  • Estrogen (endogenous).
  • Menstrual history (early menarche/late menopause).
  • Nulliparity.
  • Older age at first birth.
  • Hormone therapy history.
  • Combination estrogen plus progestin hormone replacement therapy.
  • Obesity (postmenopausal).
  • Personal history of breast cancer.
  • Personal history of benign breast disease (BBD) (proliferative forms of BBD).
  • Radiation exposure to breast/chest.
  • Age-specific risk estimates are available to help counsel and design screening strategies for women with a family history of breast cancer.

    Of all women with breast cancer, 5% to 10% may have a germline mutation of the genes BRCA1 and BRCA2.

    Specific mutations of BRCA1 and BRCA2 are more common in women of Jewish ancestry.

    The estimated lifetime risk of developing breast cancer for women with BRCA1 and BRCA2 mutations is 40% to 85%. Carriers with a history of breast cancer have an increased risk of contralateral disease that may be as high as 5% per year.

    Male BRCA2 mutation carriers also have an increased risk of breast cancer.

    Mutations in either the BRCA1 or the BRCA2 gene also confer an increased risk of ovarian cancer

    or other primary cancers.

    Once a BRCA1 or BRCA2 mutation has been identified, other family members can be referred for genetic counseling and testing.

    (Refer to the PDQ summaries on Genetics of Breast and Gynecologic Cancers; Breast Cancer Prevention; and Breast Cancer Screening for more information.)

    (Refer to the PDQ summary on Breast Cancer Prevention for more information about factors that increase the risk of breast cancer.)

    Protective Factors

    Protective factors and interventions to reduce the risk of female breast cancer include the following:

  • Estrogen use (after hysterectomy).
  • Exercise.
  • Early pregnancy.
  • Breast feeding.
  • Selective estrogen receptor modulators (SERMs).
  • Aromatase inhibitors or inactivators.
  • Risk-reducing mastectomy.
  • Risk-reducing oophorectomy or ovarian ablation.
  • (Refer to the PDQ summary on Breast Cancer Prevention for more information about factors that decrease the risk of breast cancer.)

    Screening

    Clinical trials have established that screening asymptomatic women using mammography, with or without clinical breast examination, decreases breast cancer mortality. (Refer to the PDQ summary on Breast Cancer Screening for more information.)

    Diagnosis

    Patient evaluation

    When breast cancer is suspected, patient management generally includes the following:

  • Confirmation of the diagnosis.
  • Evaluation of the stage of disease.
  • Selection of therapy.
  • The following tests and procedures are used to diagnose breast cancer:

  • Mammography.
  • Ultrasound.
  • Breast magnetic resonance imaging (MRI), if clinically indicated.
  • Biopsy.
  • Contralateral disease

    Pathologically, breast cancer can be a multicentric and bilateral disease. Bilateral disease is somewhat more common in patients with infiltrating lobular carcinoma. At 10 years after diagnosis, the risk of a primary breast cancer in the contralateral breast ranges from 3% to 10%, although endocrine therapy decreases that risk.

    The development of a contralateral breast cancer is associated with an increased risk of distant recurrence.

    When BRCA1/BRCA2 mutation carriers were diagnosed before age 40 years, the risk of a contralateral breast cancer reached nearly 50% in the ensuing 25 years.

    Patients who have breast cancer will undergo bilateral mammography at the time of diagnosis to rule out synchronous disease. To detect either recurrence in the ipsilateral breast in patients treated with breast-conserving surgery or a second primary cancer in the contralateral breast, patients will continue to have regular breast physical examinations and mammograms.

    The role of MRI in screening the contralateral breast and monitoring women treated with breast-conserving therapy continues to evolve. Because an increased detection rate of mammographically occult disease has been demonstrated, the selective use of MRI for additional screening is occurring more frequently despite the absence of randomized, controlled data. Because only 25% of MRI-positive findings represent malignancy, pathologic confirmation before treatment is recommended. Whether this increased detection rate will translate into improved treatment outcome is unknown.

    Prognostic and Predictive Factors

    Breast cancer is commonly treated by various combinations of surgery, radiation therapy, chemotherapy, and hormone therapy. Prognosis and selection of therapy may be influenced by the following clinical and pathology features (based on conventional histology and immunohistochemistry):

  • Menopausal status of the patient.
  • Stage of the disease.
  • Grade of the primary tumor.
  • Estrogen receptor (ER) and progesterone receptor (PR) status of the tumor.
  • Human epidermal growth factor type 2 receptor (HER2/neu) overexpression and/or amplification.
  • Histologic type. Breast cancer is classified into a variety of histologic types, some of which have prognostic importance. Favorable histologic types include mucinous, medullary, and tubular carcinomas.
  • The use of molecular profiling in breast cancer includes the following:

  • ER and PR status testing.
  • HER2/neu receptor status testing.
  • Gene profile testing by microarray assay or reverse transcription-polymerase chain reaction (e.g., MammaPrint, Oncotype DX).
  • On the basis of ER, PR, and HER2/neu results, breast cancer is classified as one of the following types:

  • Hormone receptor positive.
  • HER2/neu positive.
  • Triple negative (ER, PR, and HER2/neu negative).
  • ER, PR, and HER2 status are important in determining prognosis and in predicting response to endocrine and HER2-directed therapy. The American Society of Clinical Oncology/College of American Pathologists consensus panel has published guidelines to help standardize the performance, interpretation, and reporting of assays used to assess the ER-PR status by immunohistochemistry and HER2 status by immunohistochemistry and in situ hybridization.

    Gene profile tests include the following:

  • MammaPrint: The first gene profile test to be approved by the U.S. Food and Drug Administration was the MammaPrint gene signature. The 70-gene signature classifies tumors into high- and low-risk prognostic categories.
  • The aim of the MINDACT (NCT00433589) trial (see below) is to determine the clinical usefulness and patient benefit of adjuvant chemotherapy .
  • Oncotype DX: The Oncotype DX 21 gene assay is the gene profile test with the most extensive clinical validation thus far and applies to hormone receptor–positive breast cancer. A 21-gene recurrence score is generated based on the level of expression of each of the 21 genes:
  • Recurrence score <18: low risk.
  • Recurrence score ≥18 and <31: intermediate-risk.
  • Recurrence score ≥31: high risk.
  • The following trials describe the prognostic and predictive value of multigene assays in early breast cancer:

  • The prognostic ability of the Oncotype DX 21-gene assay was assessed in two randomized trials.
  • The National Surgical Adjuvant Breast and Bowel Project (NSABP B-14) trial randomly assigned patients to receive tamoxifen or placebo; the results favoring tamoxifen changed clinical practice in the late 1980s.
  • Formalin-fixed, paraffin-embedded tissue was available for 668 patients. The 10-year distant recurrence risk for patients treated with tamoxifen was 7% for those with a low recurrence score, 14% for those with an intermediate recurrence score, and 31% for those with high recurrence score (P < .001).
  • A community-based, case-control study examined the prognostic ability of the recurrence score to predict breast cancer deaths after 10 years in a group of tamoxifen-treated patients and observed a similar prognostic pattern to that seen in patients from NSABP B-14.
  • The use of Oncotype Dx to predict benefit from chemotherapy in patients with node-negative, ER-positive breast cancer was initially assessed in a prospective-retrospective way using the tamoxifen alone (n = 227) and the combination arms (n = 424) of the NSABP B-20 trial.
  • Patients in the NSABP B-20 trial were randomly assigned to receive tamoxifen alone or tamoxifen concurrently with methotrexate and fluorouracil (MF) or cyclophosphamide with MF (CMF).
  • The 10-year distant disease-free survival (DFS) improved from 60% to 88% by adding chemotherapy to tamoxifen in the high-risk group, while no benefit was observed in the low recurrence score group.
  • Similar findings were reported in the prospective-retrospective evaluation of the Southwestern Oncology Group (SWOG-8814 [NCT00929591]) trial in hormone receptor–positive lymph node-positive postmenopausal patients treated with tamoxifen with or without cyclophosphamide, doxorubicin, and fluorouracil.
  • However, the sample size in this analysis was small, follow-up was only 5 years, and the prognostic impact of having positive nodes needs to be taken into consideration.
  • Of note, both analyses (NSABP B-20 and S8814) were underpowered for any conclusive predictive analysis among patients identified as having an intermediate recurrence score.
  • Results from the prospective, randomized TAILORx (NCT00310180) trial indicate that chemotherapy is unlikely to provide substantial benefit to patients older than 50 years with ER-PR–positive and node-negative disease and a recurrence score of 11 to 25.
  • In this study, a low-risk score was defined as less than 11, an intermediate score was 11 to 25, and a high-risk score was greater than 25. These cut points differ from those described above.
  • Patients in this study with a low-risk score were found to have very low rates of recurrence at 5 years with endocrine therapy.

  • Rate of invasive DFS was 93.8% at 5 years and 84.0% at 9 years.
  • Rate of freedom from recurrence of breast cancer at a distant site was 99.3% at 5 years and 96.8% at 9 years.
  • Rate of freedom from recurrence of breast cancer at a distant or local-regional site was 98.7% at 5 years and 95.0% at 9 years.
  • Rate of overall survival (OS) was 98.0% at 5 years and 93.7% at 9 years.
  • In the middle-risk group in the TAILORx study (recurrence score, 11–25), 6,907 women were randomly assigned to endocrine therapy alone or endocrine therapy plus chemotherapy.

    Of these, 3,399 women on the endocrine therapy-alone arm and 3,312 women on the endocrine therapy-plus-chemotherapy arm were available for an analysis according to the randomized treatment assignments. After a median follow-up of 90 months, the difference in invasive DFS, the main study endpoint, met the prespecified noninferiority criterion (P > .10 for a test of no difference after 835 events had occurred) suggesting the noninferiority of endocrine therapy compared with endocrine therapy plus chemotherapy.

  • In this population, the 9-year invasive DFS was 83.3% for endocrine therapy alone and 84.3% for endocrine therapy plus chemotherapy (hazard ratio [HR], 1.08; 95% confidence interval [CI], 0.94–1.24; P = .26).
  • [Level of evidence: 1iiD]
  • One hundred eighty-five patients in the endocrine-only arm received chemotherapy, and 608 patients in the endocrine therapy-plus-chemotherapy arm did not receive their assigned chemotherapy. In an analysis based on the actual treatment received, the HR for invasive DFS was 1.14 (95% CI, 0.99–1.31; P =.06).
  • Outcomes for the other endpoints examined (freedom of distant breast cancer recurrence, freedom from local and distant recurrence, and OS) were similar between the two treatment arms and none were significant at P < 0.10.
  • There was a significant interaction between treatment assignment and age (P = .03) with respect to invasive DFS, suggesting that chemotherapy might be beneficial in women younger than 50 years with recurrence scores ranging from 11 to 25.
  • A secondary analysis of TAILORx demonstrated that integration of clinical risk (assessed by tumor size and grade) adds prognostic information to the recurrence score in women with a recurrence score of at least 11; however, clinical risk was not predictive of a chemotherapy benefit.
  • The interaction between age and chemotherapy benefit was further explored in this secondary analysis. Among women aged 50 years or younger, rates of distant recurrence were lower with chemotherapy in the setting of recurrence scores of 16 to 20 and high clinical risk; and in the setting of recurrence scores of 21 to 25, regardless of clinical risk.
  • The majority of women received tamoxifen as their endocrine therapy. It is not certain if any of the observed benefits of chemotherapy are attributable to ovarian function suppression and if they could be achieved through endocrine therapy.
  • The MINDACT (NCT00433589) trial tested whether adding MammaPrint genomic risk to a clinical-risk classification (modified from Adjuvant! Online) might guide more appropriate choices of chemotherapy in women with node negative- or 1-to-3 node-positive disease.
  • [Level of evidence: 3iiiDii] Unlike the TAILORx study, which only had hormone receptor–positive patients, this trial included hormone receptor–negative patients. In this prospective study, women with both genomic and clinical high-risk classification received chemotherapy, while those with both genomic and clinical low-risk classification did not receive chemotherapy. Participants with discordant results (clinical high-risk- with genomic low-risk classification, or clinical low-risk- with genomic high-risk classification) were randomly assigned to receive or not receive chemotherapy. A total of 1,550 women with high clinical risk and low genomic risk, and 592 women with low clinical risk and high genomic risk, were randomly assigned to receive or not receive chemotherapy. The primary goal of the study was to determine whether patients with high clinical risk, but low genomic risk, who did not receive chemotherapy had a 5-year survival rate without distant metastases (primary study endpoint) of 92% or lower (a noninferiority design).
  • This endpoint was met because the observed rate in the group was 94.7% (95% CI, 92.5%–96.2%). However, among patients with high clinical risk but low genomic risk, the rate of 5-year survival without distant metastases was 1.5% higher in the arm that did receive chemotherapy than in the arm that did not receive chemotherapy, although the study was not powered to detect a difference between these arms (HR chemotherapy vs. no chemotherapy, 0.78; 95% CI, 0.50–1.21; P = .27)
  • Patients in the low clinical risk group with high genomic risk did well, and there was little evidence of benefit from chemotherapy in this group (5-year survival without distant metastases, 95.8% with chemotherapy vs. 95.0% without; HR, 1.17; 95% CI, 0.59–2.28; P = .66).
  • Results from the prospective, randomized RxPONDER (NCT01272037) trial will help to determine if there is a benefit from adjuvant chemotherapy in patients with ER-positive-, node-positive early breast cancer treated with endocrine therapy, and a recurrence score below 25.

    Many other gene-based assays may guide treatment decisions in patients with early breast cancer (e.g., Predictor Analysis of Microarray 50 [PAM50] Risk of Recurrence [ROR] score, EndoPredict, Breast Cancer Index).

    Although certain rare inherited mutations, such as those of BRCA1 and BRCA2, predispose women to develop breast cancer, prognostic data on BRCA1/BRCA2 mutation carriers who have developed breast cancer are conflicting. These women are at greater risk of developing contralateral breast cancer. (Refer to the Prognosis of BRCA1- and BRCA2-related breast cancer section of the PDQ Genetics of Breast and Gynecologic Cancers summary for more information.)

    Posttherapy Considerations

    Hormone replacement therapy

    After careful consideration, patients with severe symptoms may be treated with hormone replacement therapy. For more information, refer to the following PDQ summaries:

  • Breast Cancer Prevention
  • Hot Flashes and Night Sweats
  • Other PDQ summaries containing information related to breast cancer include the following:

  • Breast Cancer Prevention
  • Breast Cancer Screening
  • Breast Cancer Treatment During Pregnancy
  • Genetics of Breast and Gynecologic Cancers
  • Male Breast Cancer Treatment
  • Unusual Cancers of Childhood Treatment (breast cancer in children)
  • ReferenceSection

  • American Cancer Society: Cancer Facts and Figures 2020. Atlanta, Ga: American Cancer Society, 2020. Available online. Last accessed January 17, 2020.
  • Altekruse SF, Kosary CL, Krapcho M, et al.: SEER Cancer Statistics Review, 1975-2007. Bethesda, Md: National Cancer Institute, 2010. Also available online. Last accessed December 12, 2019.
  • Johnson A, Shekhdar J: Breast cancer incidence: what do the figures mean? J Eval Clin Pract 11 (1): 27-31, 2005.
  • Haas JS, Kaplan CP, Gerstenberger EP, et al.: Changes in the use of postmenopausal hormone therapy after the publication of clinical trial results. Ann Intern Med 140 (3): 184-8, 2004.
  • Colditz GA, Kaphingst KA, Hankinson SE, et al.: Family history and risk of breast cancer: nurses' health study. Breast Cancer Res Treat 133 (3): 1097-104, 2012.
  • Malone KE, Daling JR, Doody DR, et al.: Family history of breast cancer in relation to tumor characteristics and mortality in a population-based study of young women with invasive breast cancer. Cancer Epidemiol Biomarkers Prev 20 (12): 2560-71, 2011.
  • Cybulski C, Wokołorczyk D, Jakubowska A, et al.: Risk of breast cancer in women with a CHEK2 mutation with and without a family history of breast cancer. J Clin Oncol 29 (28): 3747-52, 2011.
  • Goodwin PJ, Phillips KA, West DW, et al.: Breast cancer prognosis in BRCA1 and BRCA2 mutation carriers: an International Prospective Breast Cancer Family Registry population-based cohort study. J Clin Oncol 30 (1): 19-26, 2012.
  • Mavaddat N, Barrowdale D, Andrulis IL, et al.: Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev 21 (1): 134-47, 2012.
  • Razzaghi H, Troester MA, Gierach GL, et al.: Mammographic density and breast cancer risk in White and African American Women. Breast Cancer Res Treat 135 (2): 571-80, 2012.
  • Key TJ, Appleby PN, Reeves GK, et al.: Circulating sex hormones and breast cancer risk factors in postmenopausal women: reanalysis of 13 studies. Br J Cancer 105 (5): 709-22, 2011.
  • Kaaks R, Rinaldi S, Key TJ, et al.: Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr Relat Cancer 12 (4): 1071-82, 2005.
  • Kaaks R, Berrino F, Key T, et al.: Serum sex steroids in premenopausal women and breast cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC). J Natl Cancer Inst 97 (10): 755-65, 2005.
  • Collaborative Group on Hormonal Factors in Breast Cancer: Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol 13 (11): 1141-51, 2012.
  • Ritte R, Lukanova A, Tjønneland A, et al.: Height, age at menarche and risk of hormone receptor-positive and -negative breast cancer: a cohort study. Int J Cancer 132 (11): 2619-29, 2013.
  • Wolin KY, Carson K, Colditz GA: Obesity and cancer. Oncologist 15 (6): 556-65, 2010.
  • Kotsopoulos J, Chen WY, Gates MA, et al.: Risk factors for ductal and lobular breast cancer: results from the nurses' health study. Breast Cancer Res 12 (6): R106, 2010.
  • Goldacre MJ, Abisgold JD, Yeates DG, et al.: Benign breast disease and subsequent breast cancer: English record linkage studies. J Public Health (Oxf) 32 (4): 565-71, 2010.
  • Kabat GC, Jones JG, Olson N, et al.: A multi-center prospective cohort study of benign breast disease and risk of subsequent breast cancer. Cancer Causes Control 21 (6): 821-8, 2010.
  • Worsham MJ, Raju U, Lu M, et al.: Risk factors for breast cancer from benign breast disease in a diverse population. Breast Cancer Res Treat 118 (1): 1-7, 2009.
  • Travis LB, Hill DA, Dores GM, et al.: Breast cancer following radiotherapy and chemotherapy among young women with Hodgkin disease. JAMA 290 (4): 465-75, 2003.
  • Claus EB, Risch N, Thompson WD: Autosomal dominant inheritance of early-onset breast cancer. Implications for risk prediction. Cancer 73 (3): 643-51, 1994.
  • Gail MH, Brinton LA, Byar DP, et al.: Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 81 (24): 1879-86, 1989.
  • Blackwood MA, Weber BL: BRCA1 and BRCA2: from molecular genetics to clinical medicine. J Clin Oncol 16 (5): 1969-77, 1998.
  • Offit K, Gilewski T, McGuire P, et al.: Germline BRCA1 185delAG mutations in Jewish women with breast cancer. Lancet 347 (9016): 1643-5, 1996.
  • Frank TS, Manley SA, Olopade OI, et al.: Sequence analysis of BRCA1 and BRCA2: correlation of mutations with family history and ovarian cancer risk. J Clin Oncol 16 (7): 2417-25, 1998.
  • Cancer risks in BRCA2 mutation carriers. The Breast Cancer Linkage Consortium. J Natl Cancer Inst 91 (15): 1310-6, 1999.
  • Ford D, Easton DF, Bishop DT, et al.: Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet 343 (8899): 692-5, 1994.
  • Biesecker BB, Boehnke M, Calzone K, et al.: Genetic counseling for families with inherited susceptibility to breast and ovarian cancer. JAMA 269 (15): 1970-4, 1993.
  • Berry DA, Parmigiani G, Sanchez J, et al.: Probability of carrying a mutation of breast-ovarian cancer gene BRCA1 based on family history. J Natl Cancer Inst 89 (3): 227-38, 1997.
  • Hoskins KF, Stopfer JE, Calzone KA, et al.: Assessment and counseling for women with a family history of breast cancer. A guide for clinicians. JAMA 273 (7): 577-85, 1995.
  • Statement of the American Society of Clinical Oncology: genetic testing for cancer susceptibility, Adopted on February 20, 1996. J Clin Oncol 14 (5): 1730-6; discussion 1737-40, 1996.
  • Anderson GL, Limacher M, Assaf AR, et al.: Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial. JAMA 291 (14): 1701-12, 2004.
  • LaCroix AZ, Chlebowski RT, Manson JE, et al.: Health outcomes after stopping conjugated equine estrogens among postmenopausal women with prior hysterectomy: a randomized controlled trial. JAMA 305 (13): 1305-14, 2011.
  • Anderson GL, Chlebowski RT, Aragaki AK, et al.: Conjugated equine oestrogen and breast cancer incidence and mortality in postmenopausal women with hysterectomy: extended follow-up of the Women's Health Initiative randomised placebo-controlled trial. Lancet Oncol 13 (5): 476-86, 2012.
  • Bernstein L, Henderson BE, Hanisch R, et al.: Physical exercise and reduced risk of breast cancer in young women. J Natl Cancer Inst 86 (18): 1403-8, 1994.
  • Thune I, Brenn T, Lund E, et al.: Physical activity and the risk of breast cancer. N Engl J Med 336 (18): 1269-75, 1997.
  • Adams-Campbell LL, Rosenberg L, Rao RS, et al.: Strenuous physical activity and breast cancer risk in African-American women. J Natl Med Assoc 93 (7-8): 267-75, 2001 Jul-Aug.
  • Kampert JB, Whittemore AS, Paffenbarger RS: Combined effect of childbearing, menstrual events, and body size on age-specific breast cancer risk. Am J Epidemiol 128 (5): 962-79, 1988.
  • Pike MC, Krailo MD, Henderson BE, et al.: 'Hormonal' risk factors, 'breast tissue age' and the age-incidence of breast cancer. Nature 303 (5920): 767-70, 1983.
  • Lambe M, Hsieh C, Trichopoulos D, et al.: Transient increase in the risk of breast cancer after giving birth. N Engl J Med 331 (1): 5-9, 1994.
  • Col: Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet 360 (9328): 187-95, 2002.
  • Cuzick J, Sestak I, Bonanni B, et al.: Selective oestrogen receptor modulators in prevention of breast cancer: an updated meta-analysis of individual participant data. Lancet 381 (9880): 1827-34, 2013.
  • Goss PE, Ingle JN, Alés-Martínez JE, et al.: Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med 364 (25): 2381-91, 2011.
  • Cuzick J, Sestak I, Forbes JF, et al.: Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): an international, double-blind, randomised placebo-controlled trial. Lancet 383 (9922): 1041-8, 2014.
  • Hartmann LC, Schaid DJ, Woods JE, et al.: Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. N Engl J Med 340 (2): 77-84, 1999.
  • Rebbeck TR, Levin AM, Eisen A, et al.: Breast cancer risk after bilateral prophylactic oophorectomy in BRCA1 mutation carriers. J Natl Cancer Inst 91 (17): 1475-9, 1999.
  • Kauff ND, Satagopan JM, Robson ME, et al.: Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 346 (21): 1609-15, 2002.
  • Rebbeck TR, Lynch HT, Neuhausen SL, et al.: Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. N Engl J Med 346 (21): 1616-22, 2002.
  • Kauff ND, Domchek SM, Friebel TM, et al.: Risk-reducing salpingo-oophorectomy for the prevention of BRCA1- and BRCA2-associated breast and gynecologic cancer: a multicenter, prospective study. J Clin Oncol 26 (8): 1331-7, 2008.
  • Rosen PP, Groshen S, Kinne DW, et al.: Factors influencing prognosis in node-negative breast carcinoma: analysis of 767 T1N0M0/T2N0M0 patients with long-term follow-up. J Clin Oncol 11 (11): 2090-100, 1993.
  • Abbott A, Rueth N, Pappas-Varco S, et al.: Perceptions of contralateral breast cancer: an overestimation of risk. Ann Surg Oncol 18 (11): 3129-36, 2011.
  • Nichols HB, Berrington de González A, Lacey JV, et al.: Declining incidence of contralateral breast cancer in the United States from 1975 to 2006. J Clin Oncol 29 (12): 1564-9, 2011.
  • Heron DE, Komarnicky LT, Hyslop T, et al.: Bilateral breast carcinoma: risk factors and outcomes for patients with synchronous and metachronous disease. Cancer 88 (12): 2739-50, 2000.
  • Graeser MK, Engel C, Rhiem K, et al.: Contralateral breast cancer risk in BRCA1 and BRCA2 mutation carriers. J Clin Oncol 27 (35): 5887-92, 2009.
  • Garber JE, Golshan M: Contralateral breast cancer in BRCA1/BRCA2 mutation carriers: the story of the other side. J Clin Oncol 27 (35): 5862-4, 2009.
  • Lehman CD, Gatsonis C, Kuhl CK, et al.: MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med 356 (13): 1295-303, 2007.
  • Solin LJ, Orel SG, Hwang WT, et al.: Relationship of breast magnetic resonance imaging to outcome after breast-conservation treatment with radiation for women with early-stage invasive breast carcinoma or ductal carcinoma in situ. J Clin Oncol 26 (3): 386-91, 2008.
  • Morrow M: Magnetic resonance imaging in the breast cancer patient: curb your enthusiasm. J Clin Oncol 26 (3): 352-3, 2008.
  • Simpson JF, Gray R, Dressler LG, et al.: Prognostic value of histologic grade and proliferative activity in axillary node-positive breast cancer: results from the Eastern Cooperative Oncology Group Companion Study, EST 4189. J Clin Oncol 18 (10): 2059-69, 2000.
  • Rosen PP, Groshen S, Kinne DW: Prognosis in T2N0M0 stage I breast carcinoma: a 20-year follow-up study. J Clin Oncol 9 (9): 1650-61, 1991.
  • Diab SG, Clark GM, Osborne CK, et al.: Tumor characteristics and clinical outcome of tubular and mucinous breast carcinomas. J Clin Oncol 17 (5): 1442-8, 1999.
  • Rakha EA, Lee AH, Evans AJ, et al.: Tubular carcinoma of the breast: further evidence to support its excellent prognosis. J Clin Oncol 28 (1): 99-104, 2010.
  • Sørlie T, Perou CM, Tibshirani R, et al.: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98 (19): 10869-74, 2001.
  • Wolff AC, Hammond MEH, Allison KH, et al.: Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J Clin Oncol 36 (20): 2105-2122, 2018.
  • Hammond ME, Hayes DF, Dowsett M, et al.: American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Arch Pathol Lab Med 134 (6): 907-22, 2010.
  • Buyse M, Loi S, van't Veer L, et al.: Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98 (17): 1183-92, 2006.
  • Wittner BS, Sgroi DC, Ryan PD, et al.: Analysis of the MammaPrint breast cancer assay in a predominantly postmenopausal cohort. Clin Cancer Res 14 (10): 2988-93, 2008.
  • Mook S, Knauer M, Bueno-de-Mesquita JM, et al.: Metastatic potential of T1 breast cancer can be predicted by the 70-gene MammaPrint signature. Ann Surg Oncol 17 (5): 1406-13, 2010.
  • Ishitobi M, Goranova TE, Komoike Y, et al.: Clinical utility of the 70-gene MammaPrint profile in a Japanese population. Jpn J Clin Oncol 40 (6): 508-12, 2010.
  • Knauer M, Mook S, Rutgers EJ, et al.: The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat 120 (3): 655-61, 2010.
  • Fisher B, Jeong JH, Bryant J, et al.: Treatment of lymph-node-negative, oestrogen-receptor-positive breast cancer: long-term findings from National Surgical Adjuvant Breast and Bowel Project randomised clinical trials. Lancet 364 (9437): 858-68, 2004.
  • Paik S, Shak S, Tang G, et al.: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351 (27): 2817-26, 2004.
  • Habel LA, Shak S, Jacobs MK, et al.: A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res 8 (3): R25, 2006.
  • Mamounas EP, Tang G, Fisher B, et al.: Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: results from NSABP B-14 and NSABP B-20. J Clin Oncol 28 (10): 1677-83, 2010.
  • Paik S, Tang G, Shak S, et al.: Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24 (23): 3726-34, 2006.
  • Albain KS, Barlow WE, Shak S, et al.: Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 11 (1): 55-65, 2010.
  • Sparano JA, Gray RJ, Makower DF, et al.: Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N Engl J Med 379 (2): 111-121, 2018.
  • Sparano JA, Gray RJ, Makower DF, et al.: Prospective Validation of a 21-Gene Expression Assay in Breast Cancer. N Engl J Med 373 (21): 2005-14, 2015.
  • Sparano JA, Gray R: TAILORx: Questions Answered, Lessons Learned, and Remaining Knowledge Gaps. J Clin Oncol 37 (21): 1841-1842, 2019.
  • Cardoso F, van't Veer LJ, Bogaerts J, et al.: 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer. N Engl J Med 375 (8): 717-29, 2016.
  • 乳腺癌治疗(成人)(PDQ®)

    乳腺癌的组织病理学分类

    表格1描述了基于肿瘤位置的乳腺癌的组织学分类。

    浸润性或侵袭性导管癌是最常见的乳腺癌组织学类型,占所有病例的70%至80%。

    表1. 肿瘤位置和相关的组织学亚型
    肿瘤位置 组织学亚类
    癌,NOS
    导管的导管内的(原位)
    主要成分侵入
    侵袭性,NOS
    粉刺
    炎症性
    骨髓淋巴细胞浸润
    粘液性(胶质性)
    乳突的
    硬癌
    管状的
    其他
    小叶的原位癌为主的浸润性癌
    侵袭性的
    乳头乳腺Paget病,NOS
    伴有导管内癌的Paget病
    伴有浸润性导管癌的Paget病
    其他 未分化癌
    化生型
    NOS=无特殊说明。

    以下肿瘤亚型发生在乳房,但不被认为是典型的乳腺癌:

  • 叶状肿瘤。
  • 血管肉瘤。
  • 原发性淋巴瘤。
  • 参考文献

  • Breast. In: Edge SB, Byrd DR, Compton CC, et al., eds.: AJCC Cancer Staging Manual. 7th ed. New York, NY: Springer, 2010, pp 347-76.
  • Yeatman TJ, Cantor AB, Smith TJ, et al.: Tumor biology of infiltrating lobular carcinoma. Implications for management. Ann Surg 222 (4): 549-59; discussion 559-61, 1995.
  • Chaney AW, Pollack A, McNeese MD, et al.: Primary treatment of cystosarcoma phyllodes of the breast. Cancer 89 (7): 1502-11, 2000.
  • Carter BA, Page DL: Phyllodes tumor of the breast: local recurrence versus metastatic capacity. Hum Pathol 35 (9): 1051-2, 2004.
  • Breast Cancer Treatment (Adult) (PDQ®)

    Histopathologic Classification of Breast Cancer

    Table 1 describes the histologic classification of breast cancer based on tumor location.

    Infiltrating or invasive ductal cancer is the most common breast cancer histologic type and comprises 70% to 80% of all cases.

    Table 1. Tumor Location and Related Histologic Subtype
    Tumor Location Histologic Subtype
    Carcinoma, NOS
    DuctalIntraductal (in situ)
    Invasive with predominant component
    Invasive, NOS
    Comedo
    Inflammatory
    Medullary with lymphocytic infiltrate
    Mucinous (colloid)
    Papillary
    Scirrhous
    Tubular
    Other
    LobularInvasive with predominant in situ component
    Invasive
    NipplePaget disease, NOS
    Paget disease with intraductal carcinoma
    Paget disease with invasive ductal carcinoma
    Other Undifferentiated carcinoma
    Metaplastic
    NOS = not otherwise specified.

    The following tumor subtypes occur in the breast but are not considered typical breast cancers:

  • Phyllodes tumor.
  • Angiosarcoma.
  • Primary lymphoma.
  • ReferenceSection

  • Breast. In: Edge SB, Byrd DR, Compton CC, et al., eds.: AJCC Cancer Staging Manual. 7th ed. New York, NY: Springer, 2010, pp 347-76.
  • Yeatman TJ, Cantor AB, Smith TJ, et al.: Tumor biology of infiltrating lobular carcinoma. Implications for management. Ann Surg 222 (4): 549-59; discussion 559-61, 1995.
  • Chaney AW, Pollack A, McNeese MD, et al.: Primary treatment of cystosarcoma phyllodes of the breast. Cancer 89 (7): 1502-11, 2000.
  • Carter BA, Page DL: Phyllodes tumor of the breast: local recurrence versus metastatic capacity. Hum Pathol 35 (9): 1051-2, 2004.
  • 乳腺癌治疗(成人)(PDQ®)

    乳腺癌的分期信息

    美国癌症联合委员会(AJCC)分期系统为患者在预后方面提供了分期策略。 治疗决策部分根据分期制定,也根据其他临床因素,例如以下因素,其中一些因素也应用于分期:

  • 肿瘤大小。
  • 淋巴结状态。
  • 肿瘤组织中的雌激素受体和孕激素受体水平。
  • 肿瘤中人类表皮生长因子受体2(HER2/neu)的状态。
  • 肿瘤分级。
  • 绝经状态。
  • 患者的一般健康情况。
  • 用于定义生物标志物状态的标准描述如下:

  • 雌激素受体(ER)表达:ER表达主要通过免疫组织化学(IHC)来检测。任何1%或以上的细胞染色都被认为是ER阳性。
  • 孕激素受体(PR)表达:PR表达主要通过IHC测量。任何1%或以上的细胞染色都被认为是PR阳性。
  • HER2表达:HER2主要通过IHC来测量HER2蛋白的表达,或者通过原位杂交(ISH)来评估基因拷贝数。美国临床肿瘤学会/美国病理学家协会共识小组公布了当IHC或ISH检测模棱两可的病例指南。
  • IHC:

  • 阴性:0或1+ 染色
  • 模棱两可的:2+ 染色
  • 阳性:3+ 染色
  • ISH(双探针):

  • 可能阴性的结果:
  • HER2/染色体计数探针(CEP17)比率 <2.0和HER2的拷贝数<4
  • 可能模棱两可的结果:(可选择进行ISH检测以确认结果,或者如果以前没进行过IHC检测,可进行IHC检测)
  • HER2/CEP17比率<2.0和HER2的拷贝数>4但<6
  • 可能阳性的结果:
  • 根据ISH结果,HER2/CEP17比率>2.0
  • HER2拷贝数≥6,无论ISH检测的比率如何
  • ISH(单探针):

  • 阴性:HER2拷贝数<4
  • 模棱两可:HER2拷贝数≥4但<6
  • 阳性:HER2拷贝数≥6
  • TNM定义

    AJCC根据TNM(肿瘤、淋巴结、转移)分级来定义乳腺癌分期。

    肿瘤的分级由其形态特征决定,如管状形状、核多形性和线粒体计数。

    表 2. 原发性肿瘤的定义(T)-临床和病理 a表 3. 区域淋巴结的定义-临床(cN) a,b表 4. 区域淋巴结定义-病理学(pN) a,b表 5. 远处转移的定义(M) a表 6. 组织学分级的定义(G) a表 7. 导管原位癌:核分裂级别 aAJCC解剖和预后分期小组
    T类别T标准
    cN类别cN标准
    pN类别pN标准
    M类别M标准
    GG定义
    GG定义
    TX不可评估的原发肿瘤。
    T0无原发肿瘤的证据。
    Tisb DCIS.
    Tis (Paget)与浸润性癌和/或乳腺实质的DCIS无关的乳头Paget病。与Paget病有关的乳腺实质癌根据实质性疾病的大小和特征进行分类,但是应注意到Paget疾病的存在。
    T1肿瘤最大直径≤20mm。
    –T1mi肿瘤最大直径≤1mm。
    –T1a肿瘤最大直径>1mm但≤5mm(圆周任意测量值>1.0-1.9mm到2,mm)。
    –T1b肿瘤最大直径>5mm但≤10mm。
    –T1c肿瘤最大直径>10mm但≤20mm。
    T2肿瘤最大直径>20 mm但≤50 mm。
    T3肿瘤最大直径>50mm。
    T4累及胸壁和/或皮肤(溃疡或宏观结节)的任意大小的肿瘤;仅侵入真皮不符合T4。
    –T4a累及胸壁;在没有累及胸壁的情况下,侵入或依附于胸肌的不符合T4。
    –T4b不符合炎症性癌标准的皮肤上的溃疡和/或同侧卫星结节和/或水肿(包括橘皮样变)。
    –T4cT4a和T4b都存在。
    –T4d炎症性癌(见分类规则)。
    cN类别cN标准
    cNX c无法评估区域淋巴结(例如,以前已被切除)。
    cN0无区域淋巴结转移(通过成像或临床检查)。
    cN1活动性好的同侧I、II站淋巴结转移。
    –cN1mi d微转移(约200个细胞,>0.2mm但≤2.0mm)。
    cN2临床固定的或表面粗糙的同侧I、II级腋下淋巴结的转移;
    或在没有腋下淋巴结转移的情况下,转移至同侧乳腺内部的结节。
    –cN2a同侧I、II站腋下淋巴结的转移,淋巴结(表面粗糙)融合。
    –cN2b在无腋下淋巴结转移的情况下,在同侧乳腺内部中的转移结节。
    cN3在同侧锁骨下(腋下III站)淋巴结(s)转移,伴或不伴有l、II站腋下淋巴结转移;或同侧内乳淋巴结转移且伴有I、II站腋下淋巴结转移;或同侧锁骨上淋巴结转移,伴或不伴有腋下或内乳淋巴结转移。
    cN3a同侧锁骨下淋巴结转移。
    –cN3b同侧内乳淋巴结和腋下淋巴结转移。
    –cN3c同侧锁骨上淋巴结转移。
    pN类别pN标准
    pNX无法评估的区域淋巴结(例如,不能切除用于病理研究的或以前被切除的)。
    pN0无区域淋巴结转移被识别或仅ITCs被识别。
    –pN0(i+)区域淋巴结内仅有ITCs(恶性细胞簇≤0.2mm)。
    –pN0(mol+)通过RT-PCR检测的阳性分子发现;未检测到ITCs。
    pN1微转移;1-3个腋下淋巴结转移;和/或存在微转移或临床阴性内乳淋巴结微转移或前哨淋巴结活检确认的宏转移。
    –pN1mi微转移(约200个细胞,>0.2mm但≤2.0mm)。
    –pN1a1-3个腋下淋巴结转移,至少有一个转移灶>2.0mm。
    –pN1b同侧内乳前哨淋巴结转移,不包括ITCs。
    –pN1c合并pN1a和pN1b。
    pN24-9个腋下淋巴结转移;或通过影像学确诊的同侧内乳淋巴结转移但无腋下淋巴结转移。
    –pN2a4-9个腋下淋巴结转移(至少一个肿瘤沉积>2.0mm)。
    –pN2b临床检测到的内乳淋巴结转移,无论是否有显微确认;且腋下淋巴结病理阴性。
    pN3≥10个腋下淋巴结转移;或锁骨下(腋窝III级)淋巴结;或通过影像学确诊的同侧内乳区淋巴结转移同时存在一个或多个I、II级腋下淋巴结转移;或>3个腋下淋巴结转移、微转移或通过在临床阴性的同侧内乳淋巴结上进行的前哨淋巴结活检证实的宏转移。
    –pN3a≥10个腋下淋巴结转移(至少1个肿瘤沉积>2.0mm);或锁骨下(III站腋下淋巴)淋巴结转移。
    –pN3bpN1a或pN2a且存在cN2b(通过影像学确诊的内乳区淋巴结);
    或pN2a且存在pN1b。
    –pN3c同侧锁骨上淋巴结转移。
    M类别M标准
    M0没有往别处转移的临床或影像学证据。 b
    cM0(i+)没有远处转移的临床或影像证据时,在无转移症状或迹象的患者中,由显微或分子技术在循环血液、骨髓或其他非区域性淋巴结组织中检测出<0.2mm的肿瘤细胞或沉淀物。
    cM1通过临床和影像的方法发现的远处转移。
    pM1任何经组织学证明的在远处器官中的转移;或者,在非局部结节中,转移灶 >0.2mm。
    GG定义
    GX分级不可被评估。
    G1低组合组织学分级(有利的),SBR评分为3-5分。
    G2中等的组合组织学分级(适度有利的);SBR评分为6-7分。
    G3高组合组织学分级(不利的);SBR评分为8-9分。
    GG定义
    GX分级不可被评估。
    G1核分裂数少
    G2核分裂数中等
    G3核分裂数多
    DCIS=导管原位癌。
    a转载需获得AJCC的许可:乳腺,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    b小叶原位癌是一种良性实性肿瘤,并在第8版的《AJCC癌症分期手册》中的TNM分期中被移除。
    c分类规则--TNM解剖系统是一种编码疾病程度的方法。通过肿瘤(T)、区域淋巴结(N)和远处转移(M)的累及范围进行分期。T、N和M通过临床信息、手术发现和病理信息进行分期。已证实的新辅助治疗对疾病预后的影响程度以及对治疗的反应,需要保证定义中yp前缀和对治疗的反应的使用。使用新辅助疗法不会改变临床(治疗前)分期。根据TNM规则,临床分期的解剖部分通过前缀c(例如cT)标识。此外,新辅助治疗前的临床分期包括使用细针抽吸(FNA)或空芯针穿刺活检和前哨淋巴结活检。这些分别用后缀f和sn表示。FNA或空芯针穿刺活检确诊的淋巴结转移被归类为宏转移(cN1),无论最终病理标本中的肿瘤大小如何。例如,如果在新辅助全身治疗之前,一位患者存在一个1cm大小的原发性病灶但没有可触及的结节,超声引导的腋窝淋巴结FNA活检阳性,该患者将根据其临床(治疗前)分期被归类为cN1(f)并归于IIA期。同样的,如果患者在新辅助全身治疗前有一个阳性的腋下前哨淋巴结,则该肿瘤被归类为cN1(sn)(IIA期)。根据TNM规则,在没有病理T评估(切除原发性肿瘤)的情况下,需标记前缀p(例如pT)以被识别,新辅助治疗前的淋巴结显微评估,甚至是通过完全切除如前哨淋巴结活检进行的评估,仍然被分类为临床(cN)。
    a 转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    b(sn)和(f)后缀应分别添加到N类别上,以表示通过前哨淋巴结活检或细针抽吸/空芯针穿刺活检确诊转移。
    c 这种cNX类别很少用于之前被手术切除的区域淋巴结或没有进行腋窝体格检查记录的情况。
    d cN1mi很少使用,但在肿瘤切除前进行前哨淋巴结活检的情况下可能适用,最有可能发生在接受新辅助治疗的情况下。
    ITCs=孤立肿瘤细胞簇;RT-PCR=逆转录酶--聚合酶链反应。
    a 转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    b(sn)和(f)后缀应分别添加到N类别上,以表示通过前哨淋巴结活检或细针抽吸/空芯针穿刺活检确认转移,且无更多的淋巴结切除
    a转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    b注意,不需要影像研究来决定cM0分类。
    SBR=Scarff-Bloom-Richardson分级系统,Nottingham改造。
    a转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    a 转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    表 3. 区域淋巴结的定义-临床(cN) a,b表 4. 区域淋巴结定义-病理学(pN) a,b表 5. 远处转移的定义(M) a表 6. 组织学分级的定义(G) a表 7. 导管原位癌:核分裂级别 aAJCC解剖和预后分期小组
    cN类别cN标准
    pN类别pN标准
    M类别M标准
    GG定义
    GG定义
    cNX c无法评估区域淋巴结(例如,以前已被切除)。
    cN0无区域淋巴结转移(通过成像或临床检查)。
    cN1活动性好的同侧I、II站淋巴结转移。
    –cN1mi d微转移(约200个细胞,>0.2mm但≤2.0mm)。
    cN2临床固定的或表面粗糙的同侧I、II级腋下淋巴结的转移;
    或在没有腋下淋巴结转移的情况下,转移至同侧乳腺内部的结节。
    –cN2a同侧I、II站腋下淋巴结的转移,淋巴结(表面粗糙)融合。
    –cN2b在无腋下淋巴结转移的情况下,在同侧乳腺内部中的转移结节。
    cN3在同侧锁骨下(腋下III站)淋巴结(s)转移,伴或不伴有l、II站腋下淋巴结转移;或同侧内乳淋巴结转移且伴有I、II站腋下淋巴结转移;或同侧锁骨上淋巴结转移,伴或不伴有腋下或内乳淋巴结转移。
    cN3a同侧锁骨下淋巴结转移。
    –cN3b同侧内乳淋巴结和腋下淋巴结转移。
    –cN3c同侧锁骨上淋巴结转移。
    pN类别pN标准
    pNX无法评估的区域淋巴结(例如,不能切除用于病理研究的或以前被切除的)。
    pN0无区域淋巴结转移被识别或仅ITCs被识别。
    –pN0(i+)区域淋巴结内仅有ITCs(恶性细胞簇≤0.2mm)。
    –pN0(mol+)通过RT-PCR检测的阳性分子发现;未检测到ITCs。
    pN1微转移;1-3个腋下淋巴结转移;和/或存在微转移或临床阴性内乳淋巴结微转移或前哨淋巴结活检确认的宏转移。
    –pN1mi微转移(约200个细胞,>0.2mm但≤2.0mm)。
    –pN1a1-3个腋下淋巴结转移,至少有一个转移灶>2.0mm。
    –pN1b同侧内乳前哨淋巴结转移,不包括ITCs。
    –pN1c合并pN1a和pN1b。
    pN24-9个腋下淋巴结转移;或通过影像学确诊的同侧内乳淋巴结转移但无腋下淋巴结转移。
    –pN2a4-9个腋下淋巴结转移(至少一个肿瘤沉积>2.0mm)。
    –pN2b临床检测到的内乳淋巴结转移,无论是否有显微确认;且腋下淋巴结病理阴性。
    pN3≥10个腋下淋巴结转移;或锁骨下(腋窝III级)淋巴结;或通过影像学确诊的同侧内乳区淋巴结转移同时存在一个或多个I、II级腋下淋巴结转移;或>3个腋下淋巴结转移、微转移或通过在临床阴性的同侧内乳淋巴结上进行的前哨淋巴结活检证实的宏转移。
    –pN3a≥10个腋下淋巴结转移(至少1个肿瘤沉积>2.0mm);或锁骨下(III站腋下淋巴)淋巴结转移。
    –pN3bpN1a或pN2a且存在cN2b(通过影像学确诊的内乳区淋巴结);
    或pN2a且存在pN1b。
    –pN3c同侧锁骨上淋巴结转移。
    M类别M标准
    M0没有往别处转移的临床或影像学证据。 b
    cM0(i+)没有远处转移的临床或影像证据时,在无转移症状或迹象的患者中,由显微或分子技术在循环血液、骨髓或其他非区域性淋巴结组织中检测出<0.2mm的肿瘤细胞或沉淀物。
    cM1通过临床和影像的方法发现的远处转移。
    pM1任何经组织学证明的在远处器官中的转移;或者,在非局部结节中,转移灶 >0.2mm。
    GG定义
    GX分级不可被评估。
    G1低组合组织学分级(有利的),SBR评分为3-5分。
    G2中等的组合组织学分级(适度有利的);SBR评分为6-7分。
    G3高组合组织学分级(不利的);SBR评分为8-9分。
    GG定义
    GX分级不可被评估。
    G1核分裂数少
    G2核分裂数中等
    G3核分裂数多
    a 转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    b(sn)和(f)后缀应分别添加到N类别上,以表示通过前哨淋巴结活检或细针抽吸/空芯针穿刺活检确诊转移。
    c 这种cNX类别很少用于之前被手术切除的区域淋巴结或没有进行腋窝体格检查记录的情况。
    d cN1mi很少使用,但在肿瘤切除前进行前哨淋巴结活检的情况下可能适用,最有可能发生在接受新辅助治疗的情况下。
    ITCs=孤立肿瘤细胞簇;RT-PCR=逆转录酶--聚合酶链反应。
    a 转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    b(sn)和(f)后缀应分别添加到N类别上,以表示通过前哨淋巴结活检或细针抽吸/空芯针穿刺活检确认转移,且无更多的淋巴结切除
    a转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    b注意,不需要影像研究来决定cM0分类。
    SBR=Scarff-Bloom-Richardson分级系统,Nottingham改造。
    a转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    a 转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    表 4. 区域淋巴结定义-病理学(pN) a,b表 5. 远处转移的定义(M) a表 6. 组织学分级的定义(G) a表 7. 导管原位癌:核分裂级别 aAJCC解剖和预后分期小组
    pN类别pN标准
    M类别M标准
    GG定义
    GG定义
    pNX无法评估的区域淋巴结(例如,不能切除用于病理研究的或以前被切除的)。
    pN0无区域淋巴结转移被识别或仅ITCs被识别。
    –pN0(i+)区域淋巴结内仅有ITCs(恶性细胞簇≤0.2mm)。
    –pN0(mol+)通过RT-PCR检测的阳性分子发现;未检测到ITCs。
    pN1微转移;1-3个腋下淋巴结转移;和/或存在微转移或临床阴性内乳淋巴结微转移或前哨淋巴结活检确认的宏转移。
    –pN1mi微转移(约200个细胞,>0.2mm但≤2.0mm)。
    –pN1a1-3个腋下淋巴结转移,至少有一个转移灶>2.0mm。
    –pN1b同侧内乳前哨淋巴结转移,不包括ITCs。
    –pN1c合并pN1a和pN1b。
    pN24-9个腋下淋巴结转移;或通过影像学确诊的同侧内乳淋巴结转移但无腋下淋巴结转移。
    –pN2a4-9个腋下淋巴结转移(至少一个肿瘤沉积>2.0mm)。
    –pN2b临床检测到的内乳淋巴结转移,无论是否有显微确认;且腋下淋巴结病理阴性。
    pN3≥10个腋下淋巴结转移;或锁骨下(腋窝III级)淋巴结;或通过影像学确诊的同侧内乳区淋巴结转移同时存在一个或多个I、II级腋下淋巴结转移;或>3个腋下淋巴结转移、微转移或通过在临床阴性的同侧内乳淋巴结上进行的前哨淋巴结活检证实的宏转移。
    –pN3a≥10个腋下淋巴结转移(至少1个肿瘤沉积>2.0mm);或锁骨下(III站腋下淋巴)淋巴结转移。
    –pN3bpN1a或pN2a且存在cN2b(通过影像学确诊的内乳区淋巴结);
    或pN2a且存在pN1b。
    –pN3c同侧锁骨上淋巴结转移。
    M类别M标准
    M0没有往别处转移的临床或影像学证据。 b
    cM0(i+)没有远处转移的临床或影像证据时,在无转移症状或迹象的患者中,由显微或分子技术在循环血液、骨髓或其他非区域性淋巴结组织中检测出<0.2mm的肿瘤细胞或沉淀物。
    cM1通过临床和影像的方法发现的远处转移。
    pM1任何经组织学证明的在远处器官中的转移;或者,在非局部结节中,转移灶 >0.2mm。
    GG定义
    GX分级不可被评估。
    G1低组合组织学分级(有利的),SBR评分为3-5分。
    G2中等的组合组织学分级(适度有利的);SBR评分为6-7分。
    G3高组合组织学分级(不利的);SBR评分为8-9分。
    GG定义
    GX分级不可被评估。
    G1核分裂数少
    G2核分裂数中等
    G3核分裂数多
    ITCs=孤立肿瘤细胞簇;RT-PCR=逆转录酶--聚合酶链反应。
    a 转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    b(sn)和(f)后缀应分别添加到N类别上,以表示通过前哨淋巴结活检或细针抽吸/空芯针穿刺活检确认转移,且无更多的淋巴结切除
    a转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    b注意,不需要影像研究来决定cM0分类。
    SBR=Scarff-Bloom-Richardson分级系统,Nottingham改造。
    a转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    a 转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    表 5. 远处转移的定义(M) a表 6. 组织学分级的定义(G) a表 7. 导管原位癌:核分裂级别 aAJCC解剖和预后分期小组
    M类别M标准
    GG定义
    GG定义
    M0没有往别处转移的临床或影像学证据。 b
    cM0(i+)没有远处转移的临床或影像证据时,在无转移症状或迹象的患者中,由显微或分子技术在循环血液、骨髓或其他非区域性淋巴结组织中检测出<0.2mm的肿瘤细胞或沉淀物。
    cM1通过临床和影像的方法发现的远处转移。
    pM1任何经组织学证明的在远处器官中的转移;或者,在非局部结节中,转移灶 >0.2mm。
    GG定义
    GX分级不可被评估。
    G1低组合组织学分级(有利的),SBR评分为3-5分。
    G2中等的组合组织学分级(适度有利的);SBR评分为6-7分。
    G3高组合组织学分级(不利的);SBR评分为8-9分。
    GG定义
    GX分级不可被评估。
    G1核分裂数少
    G2核分裂数中等
    G3核分裂数多
    a转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    b注意,不需要影像研究来决定cM0分类。
    SBR=Scarff-Bloom-Richardson分级系统,Nottingham改造。
    a转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    a 转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    表 6. 组织学分级的定义(G) a表 7. 导管原位癌:核分裂级别 aAJCC解剖和预后分期小组
    GG定义
    GG定义
    GX分级不可被评估。
    G1低组合组织学分级(有利的),SBR评分为3-5分。
    G2中等的组合组织学分级(适度有利的);SBR评分为6-7分。
    G3高组合组织学分级(不利的);SBR评分为8-9分。
    GG定义
    GX分级不可被评估。
    G1核分裂数少
    G2核分裂数中等
    G3核分裂数多
    SBR=Scarff-Bloom-Richardson分级系统,Nottingham改造。
    a转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    a 转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    表 7. 导管原位癌:核分裂级别 aAJCC解剖和预后分期小组
    GG定义
    GX分级不可被评估。
    G1核分裂数少
    G2核分裂数中等
    G3核分裂数多
    a 转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.

    AJCC解剖和预后分期小组

    侵袭性癌症有3个分期组表:

  • 解剖分期组。解剖分期组表应用于世界上常规无法进行肿瘤分级和/或ER、PR和HER2的生物标志物检测的地区。(参见表8。)
  • 临床预后分期组。美国所有患者均采用临床预后分期组表。最初接受新辅助治疗的患者应该有临床预后分期和观察到的对治疗反应程度的记录,但这些病人不需要进行病理的预后分期。(参见表9。)
  • 病理预后分期组。病理预后分期组表用于美国所有接受外科手术作为最初治疗的、并且有病理T和N信息报告的患者。(参见表10。)
  • 在美国,癌症登记处和临床医生必须使用临床和病理预后分期组表进行报告,对分级、HER2、ER和PR状态进行检测,并报告美国所有浸润性癌症病例的结果。

    表 8. 解剖分期组的定义 a
    分期TNM
    0Tis、 N0、 M0
    IAT1、 N0、 M0
    IBT0、 N1mi、 M0
    T1、 N1mi、 M0
    IIAT0、 N1、 M0
    T1、 N1、 M0
    T2、 N0、 M0
    IIBT2、 N1、 M0
    T3、 N0、 M0
    IIIAT0、 N2、 M0
    T1、 N2、 M0
    T2、 N2、 M0
    T3、 N1、 M0
    T3、 N2、 M0
    IIIBT4、 N0、 M0
    T4、 N1、 M0
    T4、 N2、 M0
    IIIC任何T (Tis、 T1、 T0、 T2、 T3、 T4; N3、 M0)
    IV任何T (Tis、 T1、 T0、 T2、 T3、 T4;任何N = N0、 N1mi、 N1、 N2、 N3、 M1)
    T=原发肿瘤;N=区域淋巴结;M=远处转移。
    a转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    注释:
    1.T1包括T1mi。
    2.伴有淋巴结微转移(N1mi)的T0和T1肿瘤为IB期。
    3.伴有淋巴结微转移(N1mi)的T2、T3和T4肿瘤为N1期。
    4.M0包括M0(i+)。
    5.名称pM0无效;任何M0都是临床的。
    6.如果患者在接受新辅助系统治疗前列入M1期,则为IV期,无论对新辅助治疗的反应如何,仍保持为IV期。
    7.如果患者没有接受新辅助治疗,手术后在无疾病进展的4个月内影像学检查发现存在远处转移,则可改变分期。
    8.新辅助治疗后的分期需要在T和N加上yc或ypn前缀。如果对新辅助治疗存在完全的病理欢姐(pCR),例如如ypT0、ypN0、cM0,则不进行解剖分期。

    临床预后分期在美国用于浸润性乳腺癌患者的临床分类和分期。它使用基于患者的病史、体格检查、影像学结果(临床分期不需要)和活检的TNM信息。

    表 9. 临床预后分期的定义 aAJCC病理预后分期组
    TNM分级 HER2状态ER状态PR状态分期组
    Tis、N0、M0任何(参照表6和表7)任何任何任何0
    T1b、 N0、 M0G1阳性阳性阳性IA
    阴性IA
    T0、 N1mi、 M0阴性阳性IA
    阴性IA
    T1b、 N1mi、 M0阴性阳性阳性IA
    阴性IA
    阴性阳性IA
    阴性 IB
    G2阳性阳性阳性IA
    阴性IA
    阴性阳性IA
    阴性IA
    阴性阳性阳性IA
    阴性IA
    阴性阳性IA
    阴性 IB
    G3阳性阳性阳性IA
    阴性IA
    阴性阳性IA
    阴性IA
    阴性阳性阳性IA
    阴性 IB
    阴性阳性 IB
    阴性 IB
    T0、 N1c、 M0; T1b、 N1c、 M0; T2、 N0、 M0G1阳性 阳性阳性 IB
    阴性IIA
    阴性阳性IIA
    阴性IIA
    阴性阳性阳性IB
    阴性IIA
    阴性阳性IIA
    阴性IIA
    G2阳性阳性阳性IB
    阴性IIA
    阴性阳性IIA
    阴性IIA
    阴性阳性阳性IB
    阴性IIA
    阴性阳性IIA
    阴性IIB
    G3阳性阳性阳性IB
    阴性IIA
    阴性阳性IIA
    阴性IIA
    阴性阳性阳性IIA
    阴性IIB
    阴性阳性IIB
    阴性IIB
    T1b、 N1c、 M0; T2、 N0、 M0G1阳性阳性阳性IB
    阴性IIA
    阴性阳性IIA
    阴性IIB
    阴性阳性阳性IIA
    阴性IIB
    阴性阳性IIB
    阴性IIB
    G2阳性阳性阳性IB
    阴性IIA
    阴性阳性IIA
    阴性IIB
    阴性阳性阳性IIA
    阴性IIB
    阴性阳性IIB
    阴性IIIB
    G3阳性阳性阳性IB
    阴性IIB
    阴性阳性IIB
    阴性IIB
    阴性阳性阳性IIB
    阴性IIIA
    阴性阳性IIIA
    阴性IIIB
    T0、 N2、 M0; T1b、 N2、 M0; T2、 N2、 M0; T3、 N1d、 M0; T3、 N2、 M0G1阳性阳性阳性IIA
    阴性IIIA
    阴性阳性IIIA
    阴性IIIA
    阴性阳性阳性IIA
    阴性IIIA
    阴性阳性IIIA
    阴性IIIB
    G2阳性阳性阳性IIA
    阴性IIIA
    阴性阳性IIIA
    阴性IIIA
    阴性阳性阳性IIA
    阴性IIIA
    阴性阳性IIIA
    阴性IIIB
    G3阳性阳性阳性IIB
    阴性IIIA
    阴性阳性IIIA
    阴性IIIA
    阴性阳性阳性IIIA
    阴性IIIB
    阴性阳性IIIB
    阴性IIIC
    T4、 N1c、 M0; T4、 N1c、 M0; T4、N2、M0、 N3、 M0G1阳性阳性阳性IIIA
    阴性IIIB
    阴性阳性IIIB
    阴性IIIB
    阴性阳性阳性IIIB
    阴性IIIB
    阴性阳性IIIB
    阴性IIIC
    G2阳性阳性阳性IIIA
    阴性IIIB
    阴性阳性IIIB
    阴性IIIB
    阴性阳性阳性IIIB
    阴性IIIB
    阴性阳性IIIB
    阴性IIIC
    G3阳性阳性阳性IIIB
    阴性IIIB
    阴性阳性IIIB
    阴性IIIB
    阴性阳性阳性IIIB
    阴性IIIC
    阴性阳性IIIC
    阴性IIIC
    任何T、任何N、M1任何(参照表6和表7)任何任何任何IV
    T=原发肿瘤;N=区域淋巴结;M=远处转移。
    a 转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    b T1包括T1mi。
    c N1不包括N1mi。T1、N1mi、M0和T0、N1mi、M0癌症预后视为与T1、N0、M0癌症的预后分期相同。
    d N1包括N1mi。T2、N1,;T3、N1和T4、N1分别包括T2、T3和T4癌症与N1mi癌症分期。
    注释:
    1.因为N1mi分类需要评估整个的淋巴结,并且不能基于细针穿刺活检或空芯针活检进行分期,因此N1mi只能和临床预后分期一起用于淋巴结已切除但原发性癌症未切除的临床分期,例如在前哨淋巴结活检前接受新辅助化疗或内分泌治疗的情况。
    2.对于有淋巴结累及但没有原发肿瘤证据(如T0、N1等)或存在乳腺导管原位癌(如Tis、N1等)的病例,则应用从淋巴结的肿瘤获取的分级、人类表皮生长因子受体2 (HER2)、雌激素受体和孕激素受体的信息进行分期。
    3.对于通过2013年美国临床肿瘤学家协会/美国病理学家学院HER2检测指南中原位杂交(荧光原位杂交或显色原位杂交)检测发现HER2不确定的病例,在病理预后分期组表中,应使用HER2阴性类别进行分期。
    4.那些提供信息的和大部分已接受了适当的内分泌和/或全身化疗(包括抗her2治疗)治疗的乳腺癌患者人群是这些预后分期组的预后价值的基础。

    AJCC病理预后分期组

    病理预后分期适用于最初接受手术治疗的浸润性乳腺癌患者。它包括所有用于临床分期的信息,手术发现以及手术切除肿瘤后的病理结果。病理预后分期不用于手术切除肿瘤前接受新辅助治疗的患者。

    表 10. 病理预后分期的定义 a
    TNM分级HER2状态ER状态PR状态分期组
    Tis, N0, M0任何(参照表6和表7)任何任何任何0
    T1b、 N1c、 M0; T0、 N1c、 M0; T1b、 N1mi、 M0G1阳性阳性阳性IA
    阴性IA
    阴性阳性IA
    阴性IA
    阴性阳性阳性IA
    阴性IA
    阴性阳性IA
    阴性IA
    G2阳性阳性阳性IA
    阴性IA
    阴性阳性IA
    阴性IA
    阴性阳性阳性IA
    阴性IA
    阴性阳性IA
    阴性IB
    G3阳性阳性阳性IA
    阴性IA
    阴性阳性IA
    阴性IA
    阴性阳性阳性IA
    阴性IA
    阴性阳性IA
    阴性IB
    T0、 N1c、 M0; T1b、 N1c、 M0; T2、 N0、 M0G1阳性阳性阳性IA
    阴性IB
    阴性阳性IB
    阴性IIA
    阴性阳性阳性IA
    阴性IB
    阴性阳性IB
    阴性IIA
    G2阳性阳性阳性IA
    阴性IB
    阴性阳性IB
    阴性IIA
    阴性阳性阳性IA
    阴性IIA
    阴性阳性IIA
    阴性IIA
    G3阳性阳性阳性IA
    阴性IIA
    阴性阳性IIA
    阴性IIA
    阴性阳性阳性IB
    阴性IIA
    阴性阳性IIA
    阴性IIA
    T1b、 N1c、 M0; T2、 N0、 M0G1阳性阳性阳性IA
    阴性IIB
    阴性阳性IIB
    阴性IIB
    阴性阳性阳性IA
    阴性IIB
    阴性阳性IIB
    阴性IIB
    G2阳性阳性阳性IB
    阴性IIB
    阴性阳性IIB
    阴性IIB
    阴性阳性阳性IB
    阴性IIB
    阴性阳性IIB
    阴性IIB
    G3阳性阳性阳性IB
    阴性IIB
    阴性阳性IIB
    阴性IIB
    阴性阳性阳性IIA
    阴性IIB
    阴性阳性IIB
    阴性IIIA
    T0、 N2、 M0; T1b、 N2、 M0; T2、 N2、 M0; T3、 N1d、 M0; T3、 N2、 M0G1阳性阳性阳性IB
    阴性IIIA
    阴性阳性IIIA
    阴性IIIA
    阴性阳性阳性IB
    阴性IIIA
    阴性阳性IIIA
    阴性IIIA
    G2阳性阳性阳性IB
    阴性IIIA
    阴性阳性IIIA
    阴性IIIA
    阴性阳性阳性IB
    阴性IIIA
    阴性阳性IIIA
    阴性IIIB
    G3阳性阳性阳性IIA
    阴性IIIA
    阴性阳性IIIA
    阴性IIIA
    阴性阳性阳性IIB
    阴性IIIA
    阴性阳性IIIA
    阴性IIIC
    T4、 N1c、 M0; T4、 N1c、 M0; T4、N2、M0、 N3、 M0G1阳性阳性阳性IIIA
    阴性IIIB
    阴性阳性IIIB
    阴性IIIB
    阴性阳性阳性IIIA
    阴性IIIB
    阴性阳性IIIB
    阴性IIIB
    G2阳性阳性阳性IIIA
    阴性IIIB
    阴性阳性IIIB
    阴性IIIB
    阴性阳性阳性IIIA
    阴性IIIB
    阴性阳性IIIB
    阴性IIIC
    G3阳性阳性阳性IIIB
    阴性IIIB
    阴性阳性IIIB
    阴性IIIB
    阴性阳性阳性IIIB
    阴性IIIC
    阴性阳性IIIC
    阴性IIIC
    任何T、任何N、M1任何(参照表6和表7)任何任何任何 IV
    T=原发肿瘤;N=区域淋巴结;M=远处转移。
    a 转载需获得AJCC的许可:Breast,修订版。在:Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual.8th ed. New York, NY: Springer, 2017, pp. 4–96.
    b T1包括T1mi。
    c N1不包括N1mi。T1、N1mi、M0和T0、N1mi、M0癌症预后视为与T1、N0、M0癌症的预后分期相同。
    d N1包括N1mi。T2、N1,;T3、N1和T4、N1分别包括T2、T3和T4癌症与N1mi癌症分期。
    注释:
    1.对于有淋巴结累及但没有原发肿瘤证据(如T0、N1等)或存在乳腺导管原位癌(如Tis、N1等)的病例,则应用从淋巴结的肿瘤获得的分级、人类表皮生长因子受体2 (HER2)、雌激素受体和孕激素受体的信息进行分期。
    2.对于通过2013年美国临床肿瘤学家协会/美国病理学家学院HER2检测指南中原位杂交(荧光原位杂交或显色原位杂交)检测发现HER2不明确的病例,在病理预后分期组表中,应使用HER2阴性类别进行分期。
    3.那些提供信息的和大部分已接受了适当的内分泌和/或全身化疗(包括抗her2治疗)治疗的乳腺癌患者人群是这些预后分期组的预后价值的基础。

    参考文献

  • Barnes DM, Harris WH, Smith P, et al.: Immunohistochemical determination of oestrogen receptor: comparison of different methods of assessment of staining and correlation with clinical outcome of breast cancer patients. Br J Cancer 74 (9): 1445-51, 1996.
  • Wolff AC, Hammond MEH, Allison KH, et al.: Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J Clin Oncol 36 (20): 2105-2122, 2018.
  • Breast. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 589–628.
  • Wolff AC, Hammond ME, Hicks DG, et al.: Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31 (31): 3997-4013, 2013.
  • Wolff AC, Hammond ME, Hicks DG, et al.: Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med 138 (2): 241-56, 2014.
  • Breast Cancer Treatment (Adult) (PDQ®)

    Stage Information for Breast Cancer

    The American Joint Committee on Cancer (AJCC) staging system provides a strategy for grouping patients with respect to prognosis. Therapeutic decisions are formulated in part according to staging categories but also according to other clinical factors such as the following, some of which are included in the determination of stage:

  • Tumor size.
  • Lymph node status.
  • Estrogen-receptor and progesterone-receptor levels in the tumor tissue.
  • Human epidermal growth factor receptor 2 (HER2/neu) status in the tumor.
  • Tumor grade.
  • Menopausal status.
  • General health of the patient.
  • The standards used to define biomarker status are described as follows:

  • Estrogen receptor (ER) expression: ER expression is measured primarily by immunohistochemistry (IHC). Any staining of 1% of cells or more is considered positive for ER.
  • Progesterone receptor (PR) expression: PR expression is measured primarily by IHC. Any staining of 1% of cells or more is considered positive for PR.
  • HER2 expression: HER2 is measured primarily by either IHC to assess expression of the HER2 protein or by in situ hybridization (ISH) to assess gene copy number. The American Society of Clinical Oncology/College of American Pathologists consensus panel has published guidelines for cases when either IHC or ISH testing is equivocal.
  • IHC:

  • Negative: 0 or 1+ staining
  • Equivocal: 2+ staining
  • Positive: 3+ staining
  • ISH (dual probe):

  • Possible negative results:
  • HER2/chromosome enumeration probe (CEP17) ratio <2.0 AND HER2 copy number <4
  • Possible equivocal results: (requires performing alternative ISH test to confirm equivocal or IHC if not previously performed)
  • HER2/CEP17 ratio <2.0 AND HER2 copy number ≥4 but <6
  • Possible positive results:
  • HER2/CEP17 ratio ≥2.0 by ISH
  • HER2 copy number ≥6 regardless of ratio by ISH
  • ISH (single probe):

  • Negative: <4 HER2 copies
  • Equivocal: ≥4 HER2 copies but <6 HER2 copies
  • Positive: ≥6 HER2 copies
  • TNM Definitions

    The AJCC has designated staging by TNM (tumor, node, metastasis) classification to define breast cancer.

    The grade of the tumor is determined by its morphologic features, such as tubule formation, nuclear pleomorphism, and mitotic count.

    Table 2. Definition of Primary Tumor (T) – Clinical and Pathological aTable 3. Definition of Regional Lymph Nodes – Clinical (cN) a,bTable 4. Definition of Regional Lymph Nodes – Pathological (pN) a,bTable 5. Definition of Distant Metastasis (M) aTable 6. DDefinition of Histologic Grade (G) aTable 7. Ductal Carcinoma in situ: Nuclear Grade aAJCC Anatomic and Prognostic Stage Groups
    T CategoryT Criteria
    cN CategorycN Criteria
    pN CategorypN Criteria
    M CategoryM Criteria
    GG Definition
    GG Definition
    TXPrimary tumor cannot be assessed.
    T0No evidence of primary tumor.
    Tisb DCIS.
    Tis (Paget)Paget disease of the nipple NOT associated with invasive carcinoma and/or DCIS in the underlying breast parenchyma. Carcinomas in the breast parenchyma associated with Paget disease are categorized based on the size and characteristics of the parenchymal disease, although the presence of Paget disease should still be noted.
    T1Tumor ≤20 mm in greatest dimension.
    –T1miTumor ≤1 mm in greatest dimension.
    –T1aTumor >1 mm but ≤5 mm in greatest dimension (round any measurement >1.0–1.9 mm to 2 mm).
    –T1bTumor >5 mm but ≤10 mm in greatest dimension.
    –T1cTumor >10 mm but ≤20 mm in greatest dimension.
    T2Tumor >20 mm but ≤50 mm in greatest dimension.
    T3Tumor >50 mm in greatest dimension.
    T4Tumor of any size with direct extension to the chest wall and/or to the skin (ulceration or macroscopic nodules); invasion of the dermis alone does not qualify as T4.
    –T4aExtension to the chest wall; invasion or adherence to pectoralis muscle in the absence of invasion of chest wall structures does not qualify as T4.
    –T4bUlceration and/or ipsilateral macroscopic satellite nodules and/or edema (including peau d'orange) of the skin that does not meet the criteria for inflammatory carcinoma.
    –T4cBoth T4a and T4b are present.
    –T4dInflammatory carcinoma (see Rules for Classificationc).
    cN CategorycN Criteria
    cNX cRegional lymph nodes cannot be assessed (e.g., previously removed).
    cN0No regional lymph node metastases (by imaging or clinical examination).
    cN1Metastases to movable ipsilateral Level I, II axillary lymph nodes(s).
    –cN1mi dMicrometastases (approximately 200 cells, >0.2 mm, but ≤2.0 mm).
    cN2Metastases in ipsilateral Level I, II axillary lymph nodes that are clinically fixed or matted;
    or in ipsilateral internal mammary nodes in the absence of axillary lymph node metastases.
    –cN2aMetastases in ipsilateral Level I, II axillary lymph nodes fixed to one another (matted) or to other structures.
    –cN2bMetastases only in ipsilateral internal mammary nodes in the absence of axillary lymph node metastases.
    cN3Metastases in ipsilateral infraclavicular (Level Ill axillary) lymph node(s) with or without Level l, II axillary lymph node involvement; or in ipsilateral internal mammary lymph node(s) with Level l, II axillary lymph node metastases; or metastases in ipsilateral supraclavicular lymph node(s) with or without axillary or internal mammary lymph node involvement.
    –cN3aMetastases in ipsilateral infraclavicular lymph node(s).
    –cN3bMetastases in ipsilateral internal mammary lymph node(s) and axillary lymph node(s).
    –cN3cMetastases in ipsilateral supraclavicular lymph node(s).
    pN CategorypN Criteria
    pNXRegional lymph nodes cannot be assessed (e.g., not removed for pathological study or previously removed).
    pN0No regional lymph node metastasis identified or ITCs only.
    –pN0(i+)ITCs only (malignant cell clusters ≤0.2 mm) in regional lymph node(s).
    –pN0(mol+)Positive molecular findings by RT-PCR; no ITCs detected.
    pN1Micrometastases; or metastases in 1–3 axillary lymph nodes; and/or clinically negative internal mammary nodes with micrometastases or macrometastases by sentinel lymph node biopsy.
    –pN1miMicrometastases (~200 cells, >0.2 mm, but ≤2.0 mm).
    –pN1aMetastases in 1–3 axillary lymph nodes, at least one metastasis >2.0 mm.
    –pN1bMetastases in ipsilateral internal mammary sentinel nodes, excluding ITCs.
    –pN1cpN1a and pN1b combined.
    pN2Metastases in 4–9 axillary lymph nodes; or positive ipsilateral internal mammary lymph nodes by imaging in the absence of axillary lymph node metastases.
    –pN2aMetastases in 4–9 axillary lymph nodes (at least 1 tumor deposit >2.0 mm).
    –pN2bMetastases in clinically detected internal mammary lymph nodes with or without microscopic confirmation; with pathologically negative axillary nodes.
    pN3Metastases in ≥10 axillary lymph nodes; or in infraclavicular (Level Ill axillary) lymph nodes; or positive ipsilateral internal mammary lymph nodes by imaging in the presence of one or more positive Level l, II axillary lymph nodes; or in >3 axillary lymph nodes and micrometastases or macrometastases by sentinel lymph node biopsy in clinically negative ipsilateral internal mammary lymph nodes; or in ipsilateral supraclavicular lymph nodes.
    –pN3aMetastases in ≥10 axillary lymph nodes (at least 1 tumor deposit >2.0 mm); or metastases to the infraclavicular (Level III axillary lymph) nodes.
    –pN3bpN1a or pN2a in the presence of cN2b (positive internal mammary nodes by imaging);
    or pN2a in the presence of pN1b.
    –pN3cMetastases in ipsilateral supraclavicular lymph nodes.
    M CategoryM Criteria
    M0No clinical or radiographic evidence of distant metastases. b
    cM0(i+)No clinical or radiographic evidence of distant metastases in the presence of tumor cells or deposits ≤0.2 mm detected microscopically or by molecular techniques in circulating blood, bone marrow, or other nonregional nodal tissue in a patient without symptoms or signs of metastases.
    cM1Distant metastases detected by clinical and radiographic means.
    pM1Any histologically proven metastases in distant organs; or if in nonregional nodes, metastases >0.2 mm.
    GG Definition
    GXGrade cannot be assessed.
    G1Low combined histologic grade (favorable), SBR score of 3–5 points.
    G2Intermediate combined histologic grade (moderately favorable); SBR score of 6–7 points.
    G3High combined histologic grade (unfavorable); SBR score of 8–9 points.
    GG Definition
    GXGrade cannot be assessed.
    G1Low nuclear grade.
    G2Intermediate nuclear grade.
    G3High nuclear grade.
    DCIS = ductal carcinoma in situ.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    bLobular carcinoma in situ is a benign entity and is removed from TNM staging in the AJCC Cancer Staging Manual, 8th ed.
    cRules for Classification - The anatomic TNM system is a method for coding extent of disease. This is done by assigning a category of extent of disease for the tumor (T), regional lymph nodes (N), and distant metastases (M). T, N, and M are assigned by clinical means and by adding surgical findings and pathological information to the clinical information. The documented prognostic impact of postneoadjuvant extent of disease and response to therapy warrant clear definitions of the use of the yp prefix and response to therapy. The use of neoadjuvant therapy does not change the clinical (pretreatment) stage. As per TNM rules, the anatomic component of clinical stage is identified with the prefix c (e.g., cT). In addition, clinical staging can include the use of fine-needle aspiration (FNA) or core-needle biopsy and sentinel lymph node biopsy before neoadjuvant therapy. These are denoted with the postscripts f and sn, respectively. Nodal metastases confirmed by FNA or core-needle biopsy are classified as macrometastases (cN1), regardless of the size of the tumor focus in the final pathological specimen. For example, if, prior to neoadjuvant systemic therapy, a patient with a 1 cm primary has no palpable nodes but has an ultrasound-guided FNA biopsy of an axillary lymph node that is positive, the patient will be categorized as cN1 (f) for clinical (pretreatment) staging and is assigned to Stage IIA. Likewise, if the patient has a positive axillary sentinel node identified before neoadjuvant systemic therapy, the tumor is categorized as cN1 (sn) (Stage IIA). As per TNM rules, in the absence of pathological T evaluation (removal of the primary tumor), which is identified with prefix p (e.g., pT), microscopic evaluation of nodes before neoadjuvant therapy, even by complete removal such as sentinel node biopsy, is still classified as clinical (cN).
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    b(sn) and (f) suffixes should be added to the N category to denote confirmation of metastasis by sentinel node biopsy or fine-needle aspiration/core needle biopsy, respectively.
    cThe cNX category is used sparingly in cases where regional lymph nodes have previously been surgically removed or where there is no documentation of physical examination of the axilla.
    dcN1mi is rarely used but may be appropriate in cases where sentinel node biopsy is performed before tumor resection, most likely to occur in cases treated with neoadjuvant therapy.
    ITCs = isolated tumor cells; RT-PCR = reverse transcriptase-polymerase chain reaction.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    b(sn) and (f) suffixes should be added to the N category to denote confirmation of metastasis by sentinel node biopsy or fine-needle aspiration/core needle biopsy, respectively, with NO further resection of nodes.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    bNote that imaging studies are not required to assign the cM0 category.
    SBR = Scarff-Bloom-Richardson grading system, Nottingham Modification.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    Table 3. Definition of Regional Lymph Nodes – Clinical (cN) a,bTable 4. Definition of Regional Lymph Nodes – Pathological (pN) a,bTable 5. Definition of Distant Metastasis (M) aTable 6. DDefinition of Histologic Grade (G) aTable 7. Ductal Carcinoma in situ: Nuclear Grade aAJCC Anatomic and Prognostic Stage Groups
    cN CategorycN Criteria
    pN CategorypN Criteria
    M CategoryM Criteria
    GG Definition
    GG Definition
    cNX cRegional lymph nodes cannot be assessed (e.g., previously removed).
    cN0No regional lymph node metastases (by imaging or clinical examination).
    cN1Metastases to movable ipsilateral Level I, II axillary lymph nodes(s).
    –cN1mi dMicrometastases (approximately 200 cells, >0.2 mm, but ≤2.0 mm).
    cN2Metastases in ipsilateral Level I, II axillary lymph nodes that are clinically fixed or matted;
    or in ipsilateral internal mammary nodes in the absence of axillary lymph node metastases.
    –cN2aMetastases in ipsilateral Level I, II axillary lymph nodes fixed to one another (matted) or to other structures.
    –cN2bMetastases only in ipsilateral internal mammary nodes in the absence of axillary lymph node metastases.
    cN3Metastases in ipsilateral infraclavicular (Level Ill axillary) lymph node(s) with or without Level l, II axillary lymph node involvement; or in ipsilateral internal mammary lymph node(s) with Level l, II axillary lymph node metastases; or metastases in ipsilateral supraclavicular lymph node(s) with or without axillary or internal mammary lymph node involvement.
    –cN3aMetastases in ipsilateral infraclavicular lymph node(s).
    –cN3bMetastases in ipsilateral internal mammary lymph node(s) and axillary lymph node(s).
    –cN3cMetastases in ipsilateral supraclavicular lymph node(s).
    pN CategorypN Criteria
    pNXRegional lymph nodes cannot be assessed (e.g., not removed for pathological study or previously removed).
    pN0No regional lymph node metastasis identified or ITCs only.
    –pN0(i+)ITCs only (malignant cell clusters ≤0.2 mm) in regional lymph node(s).
    –pN0(mol+)Positive molecular findings by RT-PCR; no ITCs detected.
    pN1Micrometastases; or metastases in 1–3 axillary lymph nodes; and/or clinically negative internal mammary nodes with micrometastases or macrometastases by sentinel lymph node biopsy.
    –pN1miMicrometastases (~200 cells, >0.2 mm, but ≤2.0 mm).
    –pN1aMetastases in 1–3 axillary lymph nodes, at least one metastasis >2.0 mm.
    –pN1bMetastases in ipsilateral internal mammary sentinel nodes, excluding ITCs.
    –pN1cpN1a and pN1b combined.
    pN2Metastases in 4–9 axillary lymph nodes; or positive ipsilateral internal mammary lymph nodes by imaging in the absence of axillary lymph node metastases.
    –pN2aMetastases in 4–9 axillary lymph nodes (at least 1 tumor deposit >2.0 mm).
    –pN2bMetastases in clinically detected internal mammary lymph nodes with or without microscopic confirmation; with pathologically negative axillary nodes.
    pN3Metastases in ≥10 axillary lymph nodes; or in infraclavicular (Level Ill axillary) lymph nodes; or positive ipsilateral internal mammary lymph nodes by imaging in the presence of one or more positive Level l, II axillary lymph nodes; or in >3 axillary lymph nodes and micrometastases or macrometastases by sentinel lymph node biopsy in clinically negative ipsilateral internal mammary lymph nodes; or in ipsilateral supraclavicular lymph nodes.
    –pN3aMetastases in ≥10 axillary lymph nodes (at least 1 tumor deposit >2.0 mm); or metastases to the infraclavicular (Level III axillary lymph) nodes.
    –pN3bpN1a or pN2a in the presence of cN2b (positive internal mammary nodes by imaging);
    or pN2a in the presence of pN1b.
    –pN3cMetastases in ipsilateral supraclavicular lymph nodes.
    M CategoryM Criteria
    M0No clinical or radiographic evidence of distant metastases. b
    cM0(i+)No clinical or radiographic evidence of distant metastases in the presence of tumor cells or deposits ≤0.2 mm detected microscopically or by molecular techniques in circulating blood, bone marrow, or other nonregional nodal tissue in a patient without symptoms or signs of metastases.
    cM1Distant metastases detected by clinical and radiographic means.
    pM1Any histologically proven metastases in distant organs; or if in nonregional nodes, metastases >0.2 mm.
    GG Definition
    GXGrade cannot be assessed.
    G1Low combined histologic grade (favorable), SBR score of 3–5 points.
    G2Intermediate combined histologic grade (moderately favorable); SBR score of 6–7 points.
    G3High combined histologic grade (unfavorable); SBR score of 8–9 points.
    GG Definition
    GXGrade cannot be assessed.
    G1Low nuclear grade.
    G2Intermediate nuclear grade.
    G3High nuclear grade.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    b(sn) and (f) suffixes should be added to the N category to denote confirmation of metastasis by sentinel node biopsy or fine-needle aspiration/core needle biopsy, respectively.
    cThe cNX category is used sparingly in cases where regional lymph nodes have previously been surgically removed or where there is no documentation of physical examination of the axilla.
    dcN1mi is rarely used but may be appropriate in cases where sentinel node biopsy is performed before tumor resection, most likely to occur in cases treated with neoadjuvant therapy.
    ITCs = isolated tumor cells; RT-PCR = reverse transcriptase-polymerase chain reaction.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    b(sn) and (f) suffixes should be added to the N category to denote confirmation of metastasis by sentinel node biopsy or fine-needle aspiration/core needle biopsy, respectively, with NO further resection of nodes.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    bNote that imaging studies are not required to assign the cM0 category.
    SBR = Scarff-Bloom-Richardson grading system, Nottingham Modification.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    Table 4. Definition of Regional Lymph Nodes – Pathological (pN) a,bTable 5. Definition of Distant Metastasis (M) aTable 6. DDefinition of Histologic Grade (G) aTable 7. Ductal Carcinoma in situ: Nuclear Grade aAJCC Anatomic and Prognostic Stage Groups
    pN CategorypN Criteria
    M CategoryM Criteria
    GG Definition
    GG Definition
    pNXRegional lymph nodes cannot be assessed (e.g., not removed for pathological study or previously removed).
    pN0No regional lymph node metastasis identified or ITCs only.
    –pN0(i+)ITCs only (malignant cell clusters ≤0.2 mm) in regional lymph node(s).
    –pN0(mol+)Positive molecular findings by RT-PCR; no ITCs detected.
    pN1Micrometastases; or metastases in 1–3 axillary lymph nodes; and/or clinically negative internal mammary nodes with micrometastases or macrometastases by sentinel lymph node biopsy.
    –pN1miMicrometastases (~200 cells, >0.2 mm, but ≤2.0 mm).
    –pN1aMetastases in 1–3 axillary lymph nodes, at least one metastasis >2.0 mm.
    –pN1bMetastases in ipsilateral internal mammary sentinel nodes, excluding ITCs.
    –pN1cpN1a and pN1b combined.
    pN2Metastases in 4–9 axillary lymph nodes; or positive ipsilateral internal mammary lymph nodes by imaging in the absence of axillary lymph node metastases.
    –pN2aMetastases in 4–9 axillary lymph nodes (at least 1 tumor deposit >2.0 mm).
    –pN2bMetastases in clinically detected internal mammary lymph nodes with or without microscopic confirmation; with pathologically negative axillary nodes.
    pN3Metastases in ≥10 axillary lymph nodes; or in infraclavicular (Level Ill axillary) lymph nodes; or positive ipsilateral internal mammary lymph nodes by imaging in the presence of one or more positive Level l, II axillary lymph nodes; or in >3 axillary lymph nodes and micrometastases or macrometastases by sentinel lymph node biopsy in clinically negative ipsilateral internal mammary lymph nodes; or in ipsilateral supraclavicular lymph nodes.
    –pN3aMetastases in ≥10 axillary lymph nodes (at least 1 tumor deposit >2.0 mm); or metastases to the infraclavicular (Level III axillary lymph) nodes.
    –pN3bpN1a or pN2a in the presence of cN2b (positive internal mammary nodes by imaging);
    or pN2a in the presence of pN1b.
    –pN3cMetastases in ipsilateral supraclavicular lymph nodes.
    M CategoryM Criteria
    M0No clinical or radiographic evidence of distant metastases. b
    cM0(i+)No clinical or radiographic evidence of distant metastases in the presence of tumor cells or deposits ≤0.2 mm detected microscopically or by molecular techniques in circulating blood, bone marrow, or other nonregional nodal tissue in a patient without symptoms or signs of metastases.
    cM1Distant metastases detected by clinical and radiographic means.
    pM1Any histologically proven metastases in distant organs; or if in nonregional nodes, metastases >0.2 mm.
    GG Definition
    GXGrade cannot be assessed.
    G1Low combined histologic grade (favorable), SBR score of 3–5 points.
    G2Intermediate combined histologic grade (moderately favorable); SBR score of 6–7 points.
    G3High combined histologic grade (unfavorable); SBR score of 8–9 points.
    GG Definition
    GXGrade cannot be assessed.
    G1Low nuclear grade.
    G2Intermediate nuclear grade.
    G3High nuclear grade.
    ITCs = isolated tumor cells; RT-PCR = reverse transcriptase-polymerase chain reaction.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    b(sn) and (f) suffixes should be added to the N category to denote confirmation of metastasis by sentinel node biopsy or fine-needle aspiration/core needle biopsy, respectively, with NO further resection of nodes.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    bNote that imaging studies are not required to assign the cM0 category.
    SBR = Scarff-Bloom-Richardson grading system, Nottingham Modification.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    Table 5. Definition of Distant Metastasis (M) aTable 6. DDefinition of Histologic Grade (G) aTable 7. Ductal Carcinoma in situ: Nuclear Grade aAJCC Anatomic and Prognostic Stage Groups
    M CategoryM Criteria
    GG Definition
    GG Definition
    M0No clinical or radiographic evidence of distant metastases. b
    cM0(i+)No clinical or radiographic evidence of distant metastases in the presence of tumor cells or deposits ≤0.2 mm detected microscopically or by molecular techniques in circulating blood, bone marrow, or other nonregional nodal tissue in a patient without symptoms or signs of metastases.
    cM1Distant metastases detected by clinical and radiographic means.
    pM1Any histologically proven metastases in distant organs; or if in nonregional nodes, metastases >0.2 mm.
    GG Definition
    GXGrade cannot be assessed.
    G1Low combined histologic grade (favorable), SBR score of 3–5 points.
    G2Intermediate combined histologic grade (moderately favorable); SBR score of 6–7 points.
    G3High combined histologic grade (unfavorable); SBR score of 8–9 points.
    GG Definition
    GXGrade cannot be assessed.
    G1Low nuclear grade.
    G2Intermediate nuclear grade.
    G3High nuclear grade.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    bNote that imaging studies are not required to assign the cM0 category.
    SBR = Scarff-Bloom-Richardson grading system, Nottingham Modification.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    Table 6. DDefinition of Histologic Grade (G) aTable 7. Ductal Carcinoma in situ: Nuclear Grade aAJCC Anatomic and Prognostic Stage Groups
    GG Definition
    GG Definition
    GXGrade cannot be assessed.
    G1Low combined histologic grade (favorable), SBR score of 3–5 points.
    G2Intermediate combined histologic grade (moderately favorable); SBR score of 6–7 points.
    G3High combined histologic grade (unfavorable); SBR score of 8–9 points.
    GG Definition
    GXGrade cannot be assessed.
    G1Low nuclear grade.
    G2Intermediate nuclear grade.
    G3High nuclear grade.
    SBR = Scarff-Bloom-Richardson grading system, Nottingham Modification.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    Table 7. Ductal Carcinoma in situ: Nuclear Grade aAJCC Anatomic and Prognostic Stage Groups
    GG Definition
    GXGrade cannot be assessed.
    G1Low nuclear grade.
    G2Intermediate nuclear grade.
    G3High nuclear grade.
    aReprinted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.

    AJCC Anatomic and Prognostic Stage Groups

    There are three stage group tables for invasive cancer:

  • Anatomic Stage Group. The Anatomic Stage Group table is used in regions of the world where tumor grading and/or biomarker testing for ER, PR, and HER2 are not routinely available. (Refer to Table 8.)
  • Clinical Prognostic Stage Group. The Clinical Prognostic Stage Group table is used for all patients in the United States. Patients who have neoadjuvant therapy as their initial treatment should have the clinical prognostic stage and the observed degree of response to treatment recorded, but these patients are not assigned a pathological prognostic stage. (Refer to Table 9.)
  • Pathological Prognostic Stage Group. The Pathological Prognostic Stage Group table is used for all patients in the United States who have surgery as initial treatment and have pathological T and N information reported. (Refer to Table 10.)
  • In the United States, cancer registries and clinicians must use the Clinical and Pathological Prognostic Stage Group tables for reporting. It is expected that testing is performed for grade, HER2, ER, and PR status and that results are reported for all cases of invasive cancer in the United States.

    Table 8. Definition of Anatomic Stage Groups a
    StageTNM
    0Tis, N0, M0
    IAT1, N0, M0
    IBT0, N1mi, M0
    T1, N1mi, M0
    IIAT0, N1, M0
    T1, N1, M0
    T2, N0, M0
    IIBT2, N1, M0
    T3, N0, M0
    IIIAT0, N2, M0
    T1, N2, M0
    T2, N2, M0
    T3, N1, M0
    T3, N2, M0
    IIIBT4, N0, M0
    T4, N1, M0
    T4, N2, M0
    IIICAny T (Tis, T1, T0, T2, T3, T4; N3, M0)
    IVAny T (Tis, T1, T0, T2, T3, T4; Any N = N0, N1mi, N1, N2, N3, M1)
    T = primary tumor; N = regional lymph node; M = distant metastasis.
    aAdapted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    Notes:
    1. T1 includes T1mi.
    2. T0 and T1 tumors with nodal micrometastases (N1mi) are staged as Stage IB.
    3. T2, T3, and T4 tumors with nodal micrometastases (N1mi) are staged using the N1 category.
    4. M0 includes M0(i+).
    5. The designation pM0 is not valid; any M0 is clinical.
    6. If a patient presents with M1 disease before receiving neoadjuvant systemic therapy, the stage is Stage IV and remains Stage IV regardless of response to neoadjuvant therapy.
    7. Stage designation may be changed if postsurgical imaging studies reveal the presence of distant metastases, provided the studies are performed within 4 months of diagnosis in the absence of disease progression, and provided the patient has not received neoadjuvant therapy.
    8. Staging following neoadjuvant therapy is denoted with a yc or ypn prefix to the T and N classification. There is no anatomic stage group assigned if there is a complete pathological response (pCR) to neoadjuvant therapy, for example, ypT0, ypN0, cM0.

    The Clinical Prognostic Stage is used for clinical classification and staging of patients in the United States with invasive breast cancer. It uses TNM information based on the patient’s history, physical examination, imaging results (not required for clinical staging), and biopsies.

    Table 9. Definition of Clinical Prognostic Stage Groups aAJCC Pathological Prognostic Stage Groups
    TNMGrade HER2 StatusER StatusPR StatusStage Group
    Tis, N0, M0Any (refer to Table 6 and Table 7)AnyAnyAny0
    T1b, N0, M0G1PositivePositivePositiveIA
    NegativeIA
    T0, N1mi, M0NegativePositiveIA
    NegativeIA
    T1b, N1mi, M0NegativePositivePositiveIA
    NegativeIA
    NegativePositiveIA
    Negative IB
    G2PositivePositivePositiveIA
    NegativeIA
    NegativePositiveIA
    NegativeIA
    NegativePositivePositiveIA
    NegativeIA
    NegativePositiveIA
    Negative IB
    G3PositivePositivePositiveIA
    NegativeIA
    NegativePositiveIA
    NegativeIA
    NegativePositivePositiveIA
    Negative IB
    NegativePositive IB
    Negative IB
    T0, N1c, M0; T1b, N1c, M0; T2, N0, M0G1Positive PositivePositive IB
    NegativeIIA
    NegativePositiveIIA
    NegativeIIA
    NegativePositivePositiveIB
    NegativeIIA
    NegativePositiveIIA
    NegativeIIA
    G2PositivePositivePositiveIB
    NegativeIIA
    NegativePositiveIIA
    NegativeIIA
    NegativePositivePositiveIB
    NegativeIIA
    NegativePositiveIIA
    NegativeIIB
    G3PositivePositivePositiveIB
    NegativeIIA
    NegativePositiveIIA
    NegativeIIA
    NegativePositivePositiveIIA
    NegativeIIB
    NegativePositiveIIB
    NegativeIIB
    T2, N1d, M0; T3, N0, M0G1PositivePositivePositiveIB
    NegativeIIA
    NegativePositiveIIA
    NegativeIIB
    NegativePositivePositiveIIA
    NegativeIIB
    NegativePositiveIIB
    NegativeIIB
    G2PositivePositivePositiveIB
    NegativeIIA
    NegativePositiveIIA
    NegativeIIB
    NegativePositivePositiveIIA
    NegativeIIB
    NegativePositiveIIB
    NegativeIIIB
    G3PositivePositivePositiveIB
    NegativeIIB
    NegativePositiveIIB
    NegativeIIB
    NegativePositivePositiveIIB
    NegativeIIIA
    NegativePositiveIIIA
    NegativeIIIB
    T0, N2, M0; T1b, N2, M0; T2, N2, M0; T3, N1d, M0; T3, N2, M0G1PositivePositivePositiveIIA
    NegativeIIIA
    NegativePositiveIIIA
    NegativeIIIA
    NegativePositivePositiveIIA
    NegativeIIIA
    NegativePositiveIIIA
    NegativeIIIB
    G2PositivePositivePositiveIIA
    NegativeIIIA
    NegativePositiveIIIA
    NegativeIIIA
    NegativePositivePositiveIIA
    NegativeIIIA
    NegativePositiveIIIA
    NegativeIIIB
    G3PositivePositivePositiveIIB
    NegativeIIIA
    NegativePositiveIIIA
    NegativeIIIA
    NegativePositivePositiveIIIA
    NegativeIIIB
    NegativePositiveIIIB
    NegativeIIIC
    T4, N0, M0; T4, N1d, M0; T4, N2, M0; Any T, N3, M0G1PositivePositivePositiveIIIA
    NegativeIIIB
    NegativePositiveIIIB
    NegativeIIIB
    NegativePositivePositiveIIIB
    NegativeIIIB
    NegativePositiveIIIB
    NegativeIIIC
    G2PositivePositivePositiveIIIA
    NegativeIIIB
    NegativePositiveIIIB
    NegativeIIIB
    NegativePositivePositiveIIIB
    NegativeIIIB
    NegativePositiveIIIB
    NegativeIIIC
    G3PositivePositivePositiveIIIB
    NegativeIIIB
    NegativePositiveIIIB
    NegativeIIIB
    NegativePositivePositiveIIIB
    NegativeIIIC
    NegativePositiveIIIC
    NegativeIIIC
    Any T, Any N, M1Any (refer to Table 6 and Table 7)AnyAnyAnyIV
    T = primary tumor; N = regional lymph node; M = distant metastasis.
    aAdapted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    bT1 includes T1mi.
    cN1 does not include N1mi. T1, N1mi, M0, and T0, N1mi, M0 cancers are included for prognostic staging with T1, N0, M0 cancers of the same prognostic factor status.
    dN1 includes N1mi. T2, T3, and T4 cancers and N1mi are included for prognostic staging with T2, N1; T3, N1; and T4, N1, respectively.
    Notes:
    1. Because N1mi categorization requires evaluation of the entire node, and cannot be assigned on the basis of an fine-needle aspiration or core biopsy, N1mi can only be used with Clinical Prognostic Staging when clinical staging is based on a resected lymph node in the absence of resection of the primary cancer, such as in the situation where sentinel node biopsy is performed before receiving neoadjuvant chemotherapy or endocrine therapy.
    2. For cases with lymph node involvement with no evidence of primary tumor (e.g., T0, N1, etc.) or with breast ductal carcinoma in situ (e.g.,Tis, N1, etc.), the grade, human epidermal growth factor receptor 2 (HER2), estrogen receptor, and progesterone receptor information from the tumor in the lymph node should be used for assigning stage group.
    3. For cases where HER2 is determined to be equivocal by in situ hybridization (fluorescence in situ hybridization or chromogenic in situ hybridization) testing under the 2013 American Society of Clinical Oncologists/College of American Pathologists HER2 testing guidelines, the HER2-negative category should be used for staging in the Pathological Prognostic Stage Group table.
    4. The prognostic value of these Prognostic Stage Groups is based on populations of persons with breast cancer that have been offered and mostly treated with appropriate endocrine and/or systemic chemotherapy (including anti–HER2 therapy).

    AJCC Pathological Prognostic Stage Groups

    The Pathological Prognostic Stage applies to patients with invasive breast cancer initially treated with surgery. It includes all information used for clinical staging, surgical findings, and pathological findings following surgery to remove the tumor. Pathological Prognostic Stage is not used for patients treated with neoadjuvant therapy before surgery to remove the tumor.

    Table 10. Definition of Pathological Prognostic Stage Groups a
    TNMGradeHER2 StatusER StatusPR StatusStage Group
    Tis, N0, M0Any (refer to Table 6 and Table 7)AnyAnyAny0
    T1b, N0, M0; T0, N1mi, M0; T1b, N1mi, M0G1PositivePositivePositiveIA
    NegativeIA
    NegativePositiveIA
    NegativeIA
    NegativePositivePositiveIA
    NegativeIA
    NegativePositiveIA
    NegativeIA
    G2PositivePositivePositiveIA
    NegativeIA
    NegativePositiveIA
    NegativeIA
    NegativePositivePositiveIA
    NegativeIA
    NegativePositiveIA
    NegativeIB
    G3PositivePositivePositiveIA
    NegativeIA
    NegativePositiveIA
    NegativeIA
    NegativePositivePositiveIA
    NegativeIA
    NegativePositiveIA
    NegativeIB
    T0, N1c , M0; T1b, N1c, M0; T2, N0, M0G1PositivePositivePositiveIA
    NegativeIB
    NegativePositiveIB
    NegativeIIA
    NegativePositivePositiveIA
    NegativeIB
    NegativePositiveIB
    NegativeIIA
    G2PositivePositivePositiveIA
    NegativeIB
    NegativePositiveIB
    NegativeIIA
    NegativePositivePositiveIA
    NegativeIIA
    NegativePositiveIIA
    NegativeIIA
    G3PositivePositivePositiveIA
    NegativeIIA
    NegativePositiveIIA
    NegativeIIA
    NegativePositivePositiveIB
    NegativeIIA
    NegativePositiveIIA
    NegativeIIA
    T2, N1c, M0; T3, N0, M0G1PositivePositivePositiveIA
    NegativeIIB
    NegativePositiveIIB
    NegativeIIB
    NegativePositivePositiveIA
    NegativeIIB
    NegativePositiveIIB
    NegativeIIB
    G2PositivePositivePositiveIB
    NegativeIIB
    NegativePositiveIIB
    NegativeIIB
    NegativePositivePositiveIB
    NegativeIIB
    NegativePositiveIIB
    NegativeIIB
    G3PositivePositivePositiveIB
    NegativeIIB
    NegativePositiveIIB
    NegativeIIB
    NegativePositivePositiveIIA
    NegativeIIB
    NegativePositiveIIB
    NegativeIIIA
    T0, N2, M0; T1b, N2, M0; T2, N2, M0, T3, N1d, M0; T3, N2, M0G1PositivePositivePositiveIB
    NegativeIIIA
    NegativePositiveIIIA
    NegativeIIIA
    NegativePositivePositiveIB
    NegativeIIIA
    NegativePositiveIIIA
    NegativeIIIA
    G2PositivePositivePositiveIB
    NegativeIIIA
    NegativePositiveIIIA
    NegativeIIIA
    NegativePositivePositiveIB
    NegativeIIIA
    NegativePositiveIIIA
    NegativeIIIB
    G3PositivePositivePositiveIIA
    NegativeIIIA
    NegativePositiveIIIA
    NegativeIIIA
    NegativePositivePositiveIIB
    NegativeIIIA
    NegativePositiveIIIA
    NegativeIIIC
    T4, N0, M0; T4, N1d, M0; T4, N2, M0; Any T, N3, M0G1PositivePositivePositiveIIIA
    NegativeIIIB
    NegativePositiveIIIB
    NegativeIIIB
    NegativePositivePositiveIIIA
    NegativeIIIB
    NegativePositiveIIIB
    NegativeIIIB
    G2PositivePositivePositiveIIIA
    NegativeIIIB
    NegativePositiveIIIB
    NegativeIIIB
    NegativePositivePositiveIIIA
    NegativeIIIB
    NegativePositiveIIIB
    NegativeIIIC
    G3PositivePositivePositiveIIIB
    NegativeIIIB
    NegativePositiveIIIB
    NegativeIIIB
    NegativePositivePositiveIIIB
    NegativeIIIC
    NegativePositiveIIIC
    NegativeIIIC
    Any T, Any N, M1Any (refer to Table 6 and Table 7)AnyAnyAny IV
    T = primary tumor; N = regional lymph node; M = distant metastasis.
    aAdapted with permission from AJCC: Breast, revised version. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 4–96.
    bT1 includes T1mi.
    cN1 does not include N1mi. T1, N1mi, M0 and T0, N1mi, M0 cancers are included for prognostic staging with T1, N0, M0 cancers of the same prognostic factor status.
    dN1 includes N1mi. T2, T3, and T4 cancers and N1mi are included for prognostic staging with T2, N1; T3, N1; and T4, N1, respectively.
    Notes:
    1. For cases with lymph node involvement with no evidence of primary tumor (e.g., T0, N1, etc.) or with breast ductal carcinoma in situ (e.g.,Tis, N1, etc.), the grade, human epidermal growth factor receptor 2 (HER2), estrogen receptor, and progesterone receptor information from the tumor in the lymph node should be used for assigning stage group.
    2. For cases where HER2 is determined to be equivocal by in situ hybridization (fluorescence in situ hybridization or chromogenic in situ hybridization) testing under the 2013 American Society of Clinical Oncologists/College of American Pathologists HER2 testing guidelines, the HER2-negative category should be used for staging in the Pathological Prognostic Stage Group table.
    3. The prognostic value of these Prognostic Stage Groups is based on populations of persons with breast cancer that have been offered and mostly treated with appropriate endocrine and/or systemic chemotherapy (including anti–HER2 therapy).

    ReferenceSection

  • Barnes DM, Harris WH, Smith P, et al.: Immunohistochemical determination of oestrogen receptor: comparison of different methods of assessment of staining and correlation with clinical outcome of breast cancer patients. Br J Cancer 74 (9): 1445-51, 1996.
  • Wolff AC, Hammond MEH, Allison KH, et al.: Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J Clin Oncol 36 (20): 2105-2122, 2018.
  • Breast. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 589–628.
  • Wolff AC, Hammond ME, Hicks DG, et al.: Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31 (31): 3997-4013, 2013.
  • Wolff AC, Hammond ME, Hicks DG, et al.: Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med 138 (2): 241-56, 2014.
  • 乳腺癌治疗(成人)(PDQ®)

    早期/局限性/可手术的乳腺癌

    针对早期/局限性/可手术乳腺癌的治疗方案的概述

    早期、局限性或可手术的乳腺癌的标准治疗方案可能包括以下内容:

  • 保乳手术(乳房肿瘤切除术)和前哨淋巴结(SLN)活检,无论是否对阳性SLN进行腋窝淋巴结清扫。
  • 改良根治性乳房切除术(切除整个乳房并进行腋窝I和II级淋巴结清扫),无论是否进行乳房重建,和前哨淋巴结活检,无论是否对阳性SLN进行腋窝淋巴结清扫。
  • 腋窝淋巴结阴性的乳腺癌(乳房切除术后):
  • 没有额外的治疗。
  • 放射治疗。
  • 腋窝淋巴结阳性的乳腺癌(乳房切除术后):
  • 对于1-3个淋巴结,局部放射治疗对锁骨下/上淋巴结、乳腺内淋巴结、腋窝淋巴结和胸壁的作用尚不清楚。
  • 对于4个或更多的淋巴结或淋巴结外受累,建议进行局部放射治疗。
  • 腋窝淋巴结阴性或阳性的乳腺癌(保乳后治疗):
  • 全乳放射治疗。
  • 治疗取决于多种因素,包括肿瘤的分期、分级、分子状态(如雌激素受体[ER]、孕激素受体[PR]、人表皮生长因子受体2[HER2/neu]或三阴性[ER阴性、PR阴性、HER2/ neu阴性]状态)。辅助治疗方案可能包括以下内容:
  • 他莫昔芬。
  • 芳香化酶抑制剂(AI)治疗。
  • 卵巢功能抑制。
  • 化疗。
  • 放疗。
  • HER2靶向治疗。
  • 内分泌治疗。
  • 外科手术

    I期、II期、IIIA期和可手术的IIIC期乳腺癌通常需要采用多种方法治疗。诊断性活检和作为主要治疗手段的外科手术应作为两个独立的步骤来完成:

  • 活检。在很多情况下,是由空芯针活检来完成乳腺癌的诊断的。
  • 外科手术。在经活检证实存在恶性肿瘤后,可以在选择治疗方案之前讨论以下外科治疗方案:
  • 保乳手术。
  • 改良根治性乳房切除术(切除整个乳房并进行I和II级腋窝淋巴结清扫术),不论是否进行乳房重建。
  • 为了指导辅助治疗的选择,需要考虑许多因素,包括肿瘤的分期、分级和分子状态(如ER、PR、HER2/neu或三阴性状态)。

    局部区域的治疗

    局部治疗方法的选择取决于以下方面:

  • 病灶的位置和大小。
  • 乳房X线检查分析。
  • 乳房的大小。
  • 患者保留乳房的愿望。
  • 原发性肿瘤的手术治疗方法包括以下方面:

  • 保乳手术联合放射治疗。所有组织学类型的浸润性乳腺癌都可以使用保乳手术联合放射治疗。
  • 然而,对于炎性乳腺癌,无论其组织学亚型如何,都是保乳手术的禁忌症。乳腺多中心疾病的存在和胶原血管病史均是保乳治疗的相对禁忌症。
  • 乳房切除术联合或不联合乳房重建。
  • 腋窝的手术分期也应该进行。

    上述任何一种选择具有相同的生存率,这是欧洲癌症研究与治疗组织(EORTC)的试验(EORTC-10801)和其他前瞻性随机试验的结果证实的。

    同时,一项针对753例患者进行的回顾性研究中,根据激素受体状态将这些患者分为三组(ER阳性或PR阳性;ER阴性及PR阴性,但HER2阳性;三阴性),结果发现,经过标准保乳手术治疗的患者的乳腺疾病控制无差异;然而,目前还没有实质性的数据来支持这一发现。

    保乳治疗后乳房的局部复发率较低,并且随所用手术术式(例如,肿块切除术,象限切除术,乳房部分切除术等)而略有不同。 是否需要完全清楚的微观切缘目前仍有争议。

    然而,在一个包含33个研究(N=28162例患者)的荟萃分析中,一个多学科小组共识最近使用切缘宽度和同侧乳房肿瘤复发作为一个新共识的主要证据基础,该共识针对的是切缘在接受保乳手术加放射治疗的I期和II期乳腺癌患者。该荟萃分析的结果如下:

  • 与阴性切缘相比,阳性切缘(浸润性癌或导管原位癌上存在墨染)的同侧乳腺肿瘤复发风险增加了两倍。
  • 与肿瘤无墨相比,未发现更大范围的无瘤切缘能够明显降低同侧乳腺肿瘤的复发率。因此,建议使用肿瘤无墨作为浸润性肿瘤的切缘充分的新标准。
  • 没有证据表明,更大范围的无瘤切缘可以降低年轻患者或那些活检结果不好的、小叶癌或存在广泛导管内成分的癌症患者的同侧乳腺肿瘤复发。
  • 对于接受部分乳房切除术的患者,初次手术后切缘如果呈阳性,常常会需要二次手术切除。一项包含235例进行部分乳房切除术的0-III期乳腺癌患者的临床试验,伴或不伴选择性的边缘切除,随机地分配患者进行额外的残腔边缘切除(剃除组)或不进行(非剃除组)。

    剃除组患者的切缘阳性率明显低于不剃除组(19% vs.34%,P=0.01),且无瘤切缘的二次手术率更低(10 vs. 21%,P=0.02)。

    [证据等级:1iiDiv]

    腋窝淋巴结管理

    腋窝淋巴结状态仍然是乳腺癌患者预后最重要的预测因素。在大多数浸润性乳腺癌患者中,没有足够的证据表明可以忽略淋巴结分期。一些研究已经尝试定义一个新的分组,其中淋巴结转移的可能性低到可以不行腋窝淋巴结活检。在那些单中心的病例中,T1a肿瘤患者中阳性淋巴结的发生率在9%到16%之间。

    另一个研究发现,未进行腋窝淋巴结清扫(ALND)的T1a肿瘤患者的腋窝淋巴结复发率为2%。

    [证据等级:3iiiA]

    腋窝淋巴结分期有助于判断预后和治疗。SLN活检是在浸润性乳腺癌患者中进行的标准腋窝分期步骤的第一步。SLN被定义为原发肿瘤引流区域淋巴结中的特殊淋巴结,是原发肿瘤发生淋巴结转移所必经的第一批淋巴结;因此,SLN数量往往多于1枚。研究表明,在肿瘤周围或活检腔内或在乳晕区域注入锝Tc99m-标记的硫胶体、或蓝色染料或两者同时注射,引流至腋窝,使得SLN可以在92%至98%的患者中被识别出来。这些报告显示SLN活检和全腋窝淋巴结清扫(ALND)结果的一致性高达97.5%-100%。

    由于以下证据,SLN活检是浸润性乳腺癌的标准腋窝手术分期步骤。与腋窝淋巴结清扫术相比,单独进行SLN活检的并发症发病率更低。

    证据(SLN活检):

  • 一项包含1031名女性的随机试验,在所有患者中,比较了先进行SLN活检后进行ALND(当SLN为阳性时)与只进行ALND的结果。
  • [证据等级:1iiC]
  • SLN活检组第1年的生活质量(QOL)(根据癌症治疗-乳腺癌量表功能评估的试验结果指数中出现临床上显着恶化的患者的频率评估)更好(SLN活检组23%的恶化率 vs. ALND组35%的恶化率;P=0.001)。SLN组的手臂的功能也较好。
  • 国家手术辅助乳腺和肠道项目(NSABP-B-32 [NCT00003830])的多中心、III期试验随机分配女性(N=5611)进行SLN加ALND或单纯SLN切除,只有SLN为阳性时才进行ALND。
  • [证据等级: 1iiA]
  • 研究显示,两组在总体生存率(OS)、无病生存率(DFS)和区域控制率方面没有明显的差异。SLN加ALND组的OS为91.8%,而单纯SLN切除组的OS为90.3% (P=0.12)。
  • 由于以下试验结果,对于有限的SLN阳性乳腺癌患者,通过保乳术或乳房切除术,放疗和全身疗法,无需进行ALND。

    证据(对于有限的SLN阳性乳腺癌患者,SLN活检阳性后进行ALND)):

  • 一项多中心、随机化的临床试验试图确定在SLN活检发现SLN转移后是否需要行ALND。这项III期非劣效性临床试验计划入组1,900名T1或T2浸润性乳腺癌且无明显腺病,且经冰冻切片鉴定1-2枚SLN转移的患者,随机分配至接受ALND治疗组或不接受ALND治疗组。 所有患者均接受了肿块切除术,全乳放疗和适当的全身治疗; OS是主要终点。 由于入组方面的困难,目前共有891名患者被随机分配到两个治疗组之一。
  • [证据等级:1iiA]
  • 在中位随访6.3年时,ALND组患者的5年OS为91.8%(95%置信区间[CI]为89.1%-94.5%),单纯SLN活检组患者的5年OS为92.5%(95% CI为90.0%-95.1%)。
  • 次要终点(5年DFS):ALND组为82.2% (95% CI, 78.3%-86.3%), 单纯SLN活检组为83.9% (95% CI, 80.2%-87.9%)。
  • 在一项类似设计的试验中,929名乳腺肿瘤直径小于5cm且前哨淋巴结受累小于2mm的女性被随机分配到ALND组或无ALND组。
  • [证据等级: 1iiA]
  • 未行腋窝清扫术的患者的DFS事件较少(危险比[HR]为0.78;95%CI为0.55 -1.11)。
  • OS未见差异。
  • AMAROS (NCT00014612)试验针对发现一枚前哨淋巴结阳性后续行ALND和腋窝放射治疗进行研究。
  • [证据等级:1iiA]
  • ALND和腋窝放射治疗为T1或T2原发性乳腺癌患者提供了良好的腋窝治疗手段,且在接受保乳治疗或乳房切除术后未出现可触及的淋巴结病。
  • 腋窝放射治疗也与发病率显著降低相关。
  • 对于需要行ALND的患者,标准的评估通常只涉及I站和II站淋巴结清扫,因此可以切除符合要求数量的淋巴结以进行评估(即至少6-10枚),以降低术后复发率。

    乳房重建

    对于选择全乳切除的患者,乳房重建手术可与乳房切除手术同步进行(即即刻重建)或在后续的某个时间进行(即延迟重建)。

    乳房轮廓可以通过以下方式恢复:

  • 肌肉下方植入人工植入物(充满硅胶或盐水)。 如果无法立即进行假体植入,则可以在胸肌下方插入组织扩张器。 将盐水注射到扩张器中拉伸组织数周或数月,直到获得所需的体积。 然后用永久植入物替换组织扩张器。 (有关乳房植入物的更多信息,请访问美国食品药品监督管理局的[FDA]网站。)
  • 腹直肌或其他皮瓣。肌瓣需要一个更加复杂和漫长的手术过程,而且还可能需要输血。
  • 乳房重建后,可以在辅助治疗或局部复发时进行胸壁和区域淋巴结的放疗。 乳房假体重建后的放射治疗可能会影响美观,并且可能会增加包膜纤维化,疼痛或需要假体取出的发生率。

    术后放射治疗

    保乳手术后应常规接受放射治疗。放射治疗也适用于乳腺切除术后的高危患者。辅助放射治疗的主要目的是消除残余病灶,从而减少局部复发。

    保乳手术术后

    对于接受保乳手术而未接受放射治疗的女性患者,即使腋窝淋巴结阴性,残留乳房的肿瘤复发风险也相当大(>20%)。

    虽然所有评估放射治疗在保乳治疗中的作用的试验均显示,局部复发率在统计学上有显著降低,但没有一项试验显示死亡率在统计学上有显著降低。然而,一项大型的荟萃分析显示,保乳联合放疗可显著降低乳腺癌的复发和死亡风险。

    因此,证据支持在保乳手术后使用全乳放射治疗。

    证据(保乳手术后进行放疗):

    早期乳腺癌试验者协同组(EBCTCG)在2011年对17项临床试验进行了荟萃分析,该分析包括了2万多名早期乳腺癌患者,其结果支持保乳手术后行全乳放疗。

    [证据等级:1iiA]

  • 与只进行保乳手术相比,保乳术后全乳放疗显著降低了10年的复发风险(全乳放疗降低了19% vs. 单纯保乳手术降低了35%;相对风险(RR)=0.52;95% CI为0.48-0.56),并显著降低了15年的乳腺癌死亡风险(全乳放射治疗的为21% vs. 单纯保乳手术的为25%;RR为0.82;95% CI为0.75-0.90)。
  • 考虑到放射剂量和放疗计划,以下方面应被注意:

  • 乳腺放射剂量。常规的全乳腺放疗(包括或不包括区域淋巴结)以1.8Gy至2Gy的日剂量,持续约5至6周,总剂量为45Gy至50Gy。
  • 瘤床加量。通常给予瘤床进一步的放射加量。在欧洲进行的两项随机试验表明,使用10Gy至16Gy的放射增强可将3年的局部复发风险从4.6%降低到3.6% (P=0.044),
  • [证据等级:1iiDiii] 5年的局部复发风险从7.3%降低到4.3%(P<0.001)。
  • [证据等级:1iiDiii] 中位随访17.2年后,结果相似。
  • [证据等级:1iiDii] 如果使用了瘤床加量,通常是通过外束辐射疗法(通常是电子)或使用间质性放射性植入物来实现。
  • 放射计划。一些研究表明,对于一些乳腺癌患者来说,在3到4周内完成42.5Gy的短程分割放疗计划是一个更合理的选择。
  • 对1234名随机分配的淋巴结阴性浸润性乳腺癌患者进行的一项非劣效试验,分析了传统全乳放疗计划与短程分割放疗计划的局部复发率。
  • 接受短程分割放疗计划的女性的10年局部复发率非劣于传统的全乳放疗(短程分割放疗计划的复发率为6.2%,而传统全乳放疗的复发率为6.7%,绝对差异为0.5个百分点;95% CI为-2.5至3.5)。
  • 同样的,一个随机化的英国乳腺癌放射治疗标准化试验(START,包括START-A[ISRCTN59368779]和START-B[ISRCTN59368779])的研究发现,共随机选取了4451名完整切除肿瘤的早期浸润性乳腺癌的女性患者(pT1-3a pN0-1, M0),这些患者在保乳手术后接受了传统全乳放疗或短程分割放疗计划,结果显示,两组之间的10年的局部复发率没有差异。
  • [证据等级: 1iiDii]
  • 一项包括上述三项试验和另外六项试验的荟萃分析,证实了短程分割放疗计划和常规分割计划两组在局部复发或美容方面的差异既无统计学意义,也无临床意义。
  • 需要进行更多的研究以确定短程分割放疗是否适用于具有淋巴结瘤荷高的女性。

    区域淋巴结照射

    对累及淋巴结的患者,乳房切除术后常规行区域淋巴结照射;然而,对于接受保乳手术和全乳照射的患者,其作用尚不明确。一项针对1832名女性的随机试验(NCT00005957)显示,保乳手术后局部淋巴结照射和全乳照射可降低复发风险(10年DFS为 82.0% vs.77.0%;HR为0.76;95% CI为0.61-0.94;P =0.01),但不影响生存率(10年OS为 82.8% vs.81.8%;HR为0.91;95% CI为0.72-1.13;P=0.38)。

    [证据等级:1iiA]

    EORTC试验(NCT00002851)也报告了类似的结果。对于有或无腋窝淋巴结受累的中央或中位原发性肿瘤,或有腋窝淋巴结受累的外位肿瘤的女性,被随机分配接受全乳或胸壁照射,另外进行或不进行区域性淋巴结照射。研究人群中76.1%进行了保乳手术,其余进行了乳房切除术。与未接受局部淋巴结放射治疗的患者相比,接受局部淋巴结放射治疗的患者的OS在10年内未见改善(82.3% vs. 80.7%,P=0.06)。接受局部淋巴结照射的患者与未接受局部淋巴结照射的患者相比,远处DFS有改善(78% vs.75%,P=0.02)。

    [证据等级:1iiA]

    综合上述两项试验结果的荟萃分析发现,OS上存在微小的统计学显著差异 (HR为0.88;95%置 CI为0.78-0.99;P=0.034;5年时的绝对差异为1.6%)。

    乳房切除术后

    术后胸壁及区域淋巴结辅助放疗常规应用于乳房切除术后局部复发风险高的患者。局部复发风险最高的患者有以下一种或多种情况:

  • 4个或更多的阳性腋窝淋巴结。
  • 非常明显的侵犯到淋巴结包膜外。
  • 大的原发性肿瘤。
  • 原发肿瘤的边缘与手术切缘非常接近或切缘呈阳性。
  • 在高危人群中,放疗可以减少局部复发,即使是那些接受辅助化疗的患者。

    没有任何高危因素的1-3个受累淋巴结的患者局部复发的风险较低,常规辅助放疗在这种情况下的应用价值尚不明确。

    证据(1-3个受累淋巴结患者术后放疗):

  • 2005年的EBCTCG荟萃分析,对78个随机治疗试验中的42,000名女性进行了比较,结果显示,不考虑淋巴结转移的数目,放疗是可以获益的。
  • [证据等级:1iiA]
  • 对于腋窝淋巴结阳性,行乳房切除和腋窝清扫(清除腋窝淋巴结和周围脂肪)的女性患者,放射治疗将5年局部复发风险从23%降低到6%(绝对获益17%;95%CI为15.2%-18.8%)。这转化为乳腺癌死亡率的显著降低(P=0.002),54.7% vs.60.1%,绝对获益5.4%(95%CI为2.9%-7.9%)。
  • 在亚组分析中,1至3个淋巴结受累的女性的5年局部复发率降低了12%(95% CI,8%-16%),4个或4个以上淋巴结受累的女性的5年局部复发率降低了14%(95% CI,10%-18%)。在一项对1314名腋窝清扫和1至3个阳性淋巴结的女性的最新荟萃分析显示,放疗降低了局部复发(2P[双侧显著性水平]<0.00001),总体复发(RR,0.68;95%CI,0.57-0.82;2P=0.0006),和乳腺癌死亡率(RR,0.80;95%CI,0.67-0.95;2P=0.01)。
  • [证据等级:1iiA]
  • 相反,对于淋巴结阴性的局部复发风险较低的女性,5年局部复发的绝对减少率仅为4%(P =0.002;95% CI,1.8%-6.2%),乳腺癌15年死亡率统计学上没有显著降低(绝对增获益1.0%;;P>0.1;95%CI,-0.8%-2.8%)。
  • 此外,一项对NSABP试验的分析显示,即使在原发肿瘤较大(>5cm)和腋窝淋巴结阴性的患者中,孤立的局部复发的风险也很低(7.1%),以至于没有必要进行常规的局部放疗。

    术后放射治疗的时机

    保乳术后辅助化疗和放疗的最佳顺序已被研究。根据以下研究,在保乳手术后将放疗推迟几个月直至辅助化疗结束,似乎对整体预后没有不利影响。此外,在保乳手术后不久开始化疗,对于有远处转移风险的患者可能是更好的选择。

    证据(术后放疗时机):

  • 在一项随机试验中,患者接受下列方案之一:
  • [证据等级:1iiA]
  • 先化疗(n=122),包括环磷酰胺、甲氨喋呤、氟尿嘧啶(5-FU)、强的松(CMFP)加阿霉素,每21天为一周期,化疗4周期,然后乳腺放疗。
  • 先乳腺放疗(n=122),然后进行相同的化疗。
  • 观察结果如下:

  • 中位随访5年,先放疗组的OS为73%,先化疗组的OS为81%(P=0.11)。
  • 先放疗组的5年局部复发粗患病率为5%,先化疗组的局部复发粗患病率为14%,先放疗组的局部复发粗患病率为32%,先化疗组的远处或局部复发或两者同时复发粗患病率为20%。这种复发的差异有边界统计学意义(P =0.07)。
  • 进一步的分析显示,除了肿瘤边缘呈阴性或1至3个淋巴结呈阳性的患者外,大多数亚组的复发模式仍存在差异。对于这两个亚组,尽管这些亚组分析的统计效力较低,但治疗顺序的安排在局部或远处复发率上几乎没有差异。
  • 先放疗组远处复发增加的可能解释是,化疗在术后平均延迟了17周,而且该组由于增加了骨髓抑制而接受了较低的化疗剂量。
  • 另外两个随机试验,虽然不是专门设计来确定放疗和辅助化疗的时机,但确实增加了有用的信息。
  • 在NSABP-B-15试验中,接受过保乳手术的患者接受任何一疗程的环磷酰胺、甲氨蝶呤、和5-FU(CMF) (n=194)后进行放射治疗,之后接受5个额外周期的CMF,或接受4个周期的阿霉素和环磷酰胺(AC) (n=199),然后进行放射治疗。
  • [证据等级:1iiA]
  • 在这两个治疗组之间没有观察到DFS、远期DFS和OS的差异。
  • 国际乳腺癌研究组试验VI和VII也改变了放射治疗和CMF辅助化疗的时机,并报告了与NSABP-B-15相似的结果。
  • 这些研究表明,术后2至7个月延迟放疗对局部复发率没有影响。这些发现在一项荟萃分析中得到了证实。

    [证据等级:1iiA]

    在一项在接受治疗的HER2/neu阳性乳腺癌患者中开展的、以评估加入曲妥珠单抗获益性的III期临床试验的额外分析中,发现同时接受辅助放疗和曲妥珠单抗的患者的急性不良事件或心脏事件发生率没有增加。

    因此,应用曲妥珠单抗的同时,进行放射治疗似乎是安全的,并且避免了放疗开始后的额外延迟。

    放射的远期毒性效应

    放射治疗的远期毒性反应是罕见的,可以通过目前的放射传输技术和仔细描绘靶区来最小化其毒性反应。放射的远期效应包括以下方面:

  • 放射性肺炎。在一项对1624名女性接受保乳手术和辅助乳腺放疗的单中心回顾性分析中,中位随访77个月,有症状的放射性肺炎的总发生率为1.0%。
  • 存在锁骨上放射区域的情况下,肺炎的发生率增加到3.0%,而在同时接受化疗的情况下,肺炎的发生率增加到8.8%。而接受序贯化疗的患者的发病率仅为1.3%。
  • [证据等级:3iii]
  • 心脏事件。对左侧胸壁或乳房的辅助放疗(无论是否包括区域淋巴管)是否与心源性死亡率的增加相关,存在争议。在1980年以前接受放射治疗的女性中,相比未接受放射治疗或仅接受右侧放射治疗者,心源性死亡率在10至15年后增加。
  • 这可能是由心肌受到辐射引起的。
  • 现代放射治疗技术在20世纪90年代被引入,当对左侧胸壁或左侧乳房放射时,可使深层心肌的接受的辐射最小化。心源性死亡率也随之降低。

    一个从1973年到1989年美国国家癌症研究所的监测、流行病学、最终结果项目(SEER)数据的分析回顾了接受乳房或胸壁放射的女性的由缺血性心脏病引起的死亡人数,该结果显示,自1980年以来,未发现接受左侧乳房或胸壁放射的女性死于缺血性心脏病的比率增加。

    [证据等级:3iB]

  • 上肢淋巴水肿。淋巴水肿仍然是影响乳腺癌患者生活质量的主要问题。单一模式的腋窝治疗(手术或放射治疗)与较低的上肢水肿发生率相关。在接受腋窝清扫术的患者中,辅助放疗会增加发生上肢水肿的风险。仅接受腋窝清扫术的患者中有2%-10%出现水肿,而接受腋窝清扫术和辅助放疗的患者中有13%-18%出现水肿。
  • (更多信息,请参阅关于淋巴水肿的PDQ总结。)
  • 臂丛神经病变。乳腺癌患者在接受辅助淋巴结放射治疗后发生臂丛放射损伤是一种罕见的临床现象。在一项使用现有辐射技术的单中心研究中,449名乳腺癌患者接受了术后乳房和区域淋巴管的放射治疗,监测持续了5.5年,以评估臂丛损伤的发生率。
  • 临床上,这种损伤的鉴别诊断是通过计算机断层扫描(CT)实现的,用于区分放射损伤和肿瘤复发。当54Gy分为30次照射区域淋巴结时,症状性臂丛神经损伤的发生率为1.0%,而分割大小增加时(45Gy分割为15次照射)该损伤的发生率为5.9%。
  • 对侧乳腺癌。一份报告显示,45岁以下的女性在乳房切除后接受胸壁放射治疗,对侧患乳腺癌的风险会增加。
  • 45岁及45岁以上接受放射治疗的女性,对侧患乳腺癌的风险没有增加。
  • 应用对侧乳腺辐射剂量最小化的技术,从而尽可能地降低绝对风险。
  • 第二恶性肿瘤的风险。辅助放射治疗后第二恶性肿瘤的发生率很低。治疗区域的肉瘤罕见,10年的长期风险为0.2%。
  • 在不吸烟者中,应用当前的剂量测定技术时,由治疗期间的辐射暴露而导致肺癌的风险是最小的。然而,吸烟者中,同侧肺患肺癌风险可能轻微增加。
  • 术后全身治疗

    肿瘤分期和分子分型决定了是否需要辅助全身治疗及应该选择何种治疗方案。例如,激素受体(ER和/或PR)阳性的患者将接受内分泌治疗。HER2过表达患者应接受辅助曲妥珠单抗治疗,往往还需联合化疗。如果既无HER2过表达,也无激素受体表达,则辅助治疗依赖于化疗,通常还需联合试验性靶向治疗。

    一个国际共识小组提出了一个风险分类系统和系统性治疗方案。

    这种经过一些修改的分类如下:

    表11.不同亚型早期乳腺癌的全身治疗a
    亚型治疗方案注释
    管状A样
    —激素受体阳性大多数情况下单纯内分泌治疗考虑化疗,如果:
    —HER2阴性—高肿瘤负荷(≥4枚阳性淋巴结, T3或更高)
    –PR>20%
    –Ki67水平低–3级
    管状B样
    —激素受体阳性大多数情况下内分泌治疗加化疗
    —HER2阴性
    —Ki67水平高或PR低
    HER2阳性化疗加抗HER2治疗如果激素受体阳性,应采用内分泌治疗
    肿瘤小且淋巴结阴性可以考虑不进行化疗和抗HER2治疗
    三阴化疗肿瘤小且淋巴结阴性可以考虑不进行化疗
    HER2=人表皮生长因子受体2;LN =淋巴结;PR=孕激素受体。
    a 来自Senkus等人的修订。

    最恰当选择治疗方案的基础是了解个体肿瘤复发风险与辅助治疗的短期和长期风险之间的平衡。这种方法允许临床医生帮助患者确定预期的治疗效果是否符合他们的实际情况。以下所述的治疗方案应根据患者和肿瘤的特征来确定。

    表12.I、II、IIIA期和可手术的IIIC期乳腺癌的辅助全身治疗方案化疗20世纪70年代至2000年的辅助化疗:以蒽环类药物为主的方案vs.环磷酰胺、甲氨蝶呤和5-FU(CMF)
    患者组治疗方案
    绝经前,激素受体阳性(ER或PR)无额外的治疗
    他莫昔芬
    他莫昔芬+化疗
    卵巢功能抑制+他莫昔芬
    卵巢功能抑制+芳香化酶抑制剂
    绝经前,激素受体阴性(ER或PR)无额外的治疗
    化疗
    绝经后,激素受体阳性(ER或PR)无额外的治疗
    芳香化酶抑制剂或他莫昔芬治疗序贯芳香化酶抑制剂,联合或不联合化疗
    绝经后,激素受体阴性(ER或PR)无额外的治疗
    化疗
    ER=雌激素受体;PR=孕激素受体。

    化疗

    20世纪70年代至2000年的辅助化疗:以蒽环类药物为主的方案vs.环磷酰胺、甲氨蝶呤和5-FU(CMF)

    EBCTCG荟萃分析分析了从1976年开始至1989年的11项临床试验,在这些试验中,患者被随机分配接受含有蒽环类药物(如阿霉素或表阿霉素)或CMF(环磷酰胺、甲氨蝶呤和5-FU)治疗方案。比较CMF方案和含蒽环类药物方案的综合分析结果表明,含蒽环类药物的方案对绝经前和绝经后女性都有轻微的优势。

    证据(蒽环类方案):

  • EBCTCG总览分析了大约14000名女性患者,直接比较了含蒽环类药物的方案(主要是6个月的5-FU、表柔比星、环磷酰胺[FEC]或氟尿嘧啶、阿霉素、环磷酰胺[FAC])和CMF方案 (PO或静脉注射[IV]),其中64%的患者年龄小于50岁。
  • 与CMF相比,以蒽环类药物为基础的方案可使疾病复发的年风险降低11%,死亡的年风险降低16%,虽然幅度不大,但具有统计学意义。在每个病例中,基于蒽环类药物的化疗和基于CMF的化疗在5年和10年的绝对疗效差异约为3%和4%。
  • [证据等级:1iiA]
  • 值得注意的是,对70岁以上的女性进行的研究很少,对这个年龄段的女性不能得出明确的结论。
  • 重要的是,这些数据来自临床试验,在这些试验中,患者没有根据激素受体状态来选择辅助治疗,且这些试验是在含紫杉烷治疗、剂量密集治疗或曲妥珠单抗基础治疗出现之前就已经开始的。
  • 因此,这些数据可能不能反映不断发展的治疗模式下的治疗结果。
  • 研究结果表明,肿瘤的特征(即淋巴结阳性,HER2/neu过表达型乳腺癌)可能预示着对蒽环类药物的反应性。

    证据(HER2/neu扩增的女性患者以蒽环类药物为主的治疗方案):

  • 随机临床试验的回顾性分析数据表明,在淋巴结阳性的乳腺癌患者中,标准剂量与低剂量辅助环磷酰胺、阿霉素和5-FU (CAF)相比,
  • 或者在辅助治疗方案中加入阿霉素,
  • 仅适用于HER2/neu过表达的患者。[证据等级:1iiA]
  • 对710名绝经前、淋巴结阳性的女性的HER2/neu状态进行回顾性分析,以了解CMF方案辅助化疗或环磷酰胺、表阿霉素和5-FU(CEF)方案辅助化疗的效果。
  • [证据水平:2A]采用荧光原位杂交、聚合酶链反应和免疫组化的方法检测HER2/neu。
  • 该研究证实了之前的数据,即HER2/neu的扩增与无复发生存率(RFS)和OS的降低相关。
  • 在HER2/neu扩增的患者中,CEF可提高RFS和OS。
  • 在无HER2/neu扩增的情况下,CEF和CMF方案有着相似的RFS(复发的HR为0.91;95%CI,0.71-1.18;P=0.049)和OS(死亡的HR为1.06;95%CI,0.83-1.44;P=0.68)。
  • 类似的结果也出现在一项荟萃分析中,该荟萃分析包括8个随机试验(包括刚刚描述的试验)中已知HER2状态的5354名患者,比较了含蒽环类和不含蒽环类的治疗方案的疗效。
  • 辅助化疗2000年至今:在辅助治疗中加入紫杉烷类药物的作用

    有几项试验研究了在淋巴结阳性乳腺癌患者,提出在以不含蒽环类药物为基础的辅助化疗方案中添加紫杉类药物(紫杉醇或多西他赛)可以获益。

    证据(在以蒽环类药物为基础的方案中添加一种紫杉类药物):

  • 一项基于13项研究的荟萃分析表明,加入紫杉类药物可以提高DFS和OS(DFS:HR为0.83;95%CI,0.79-0.87;P<0.001;OS:HR为0.85;95%CI,0.79-0.91;P<0.001)。
  • [证据等级:1iiA]
  • 5年的绝对生存率差异,DFS为5%,OS为3%,该结果支持含有紫杉类药物的方案。
  • 在以淋巴结状态、激素受体状态、年龄和绝经状态定义的患者亚群中,观察到的获益没有差异。两种药物的疗效也没有明显差异。然而,没有一项研究回顾了涉及紫杉醇和多西他赛的直接比较。
  • 美国的一项组间研究(CLB-9344[NT00897026])将淋巴结阳性的女性肿瘤患者,随机分配至三个阿霉素剂量组(60、75和90mg/m2),每组联合固定剂量的环磷酰胺(600mg/m2),每3周为一个周期,持续4个周期。在AC(阿霉素和环磷酰胺)化疗后,患者再次被随机分配,分别为接受紫杉醇(175mg/m2,每3周为一个周期,持续4个周期),或不行进一步治疗,激素受体阳性的女性肿瘤患者还接受5年的他莫昔芬治疗。
  • [证据等级:1iiA]
  • 虽然阿霉素的剂量增加并无获益,但添加紫杉醇后可显著提高DFS(5%)和OS(3%)。
  • NSABP-B-28(NCT01420185)试验随机分配3060名淋巴结阳性的乳腺癌患者,术后接受4次AC或4次AC序贯4次紫杉醇治疗。50岁以下激素受体阳性和所有50岁以上的女性都服用他莫昔芬。
  • [证据等级:1iiA]
  • 加入紫杉醇可显著提高DFS(HR为0.83;95% CI,0.72-0.96;P =0.006;5年DFS,76% vs.72%)。
  • 然而,OS的差异很小(HR为0.93),并且没有统计学意义(P=0.46)。
  • 在乳腺癌国际研究组(BCIRG-001)的试验中,将FAC方案与多西他赛联合阿霉素和环磷酰胺(TAC)方案进行了比较,共1491名淋巴结阳性的女性患者接受了该方案。两种方案均给予6个周期的术后辅助治疗。
  • [证据等级:1iiA]
  • TAC组的5年DFS率为75%,而FAC组的5年DFS率为68%(P=0.001)。
  • TAC组的整体死亡率比FAC组低30%(HR为0.70;98% CI,0.53-0.91;P<0.008)。
  • TAC组中贫血、中性粒细胞减少、粒细胞减少性发热和感染更为常见。两组中均无与感染相关的死亡。(有关贫血的信息,请参阅PDQ总结中关于疲乏的部分内容。)
  • 东部肿瘤协作组牵头的组间试验(E1199[NCT00004125])共纳入4950名受试患者,在标准剂量的AC化疗后,对两种方案(单周方案和3周方案)两种药物(多西他赛和紫杉醇)进行比较。

    [证据水平:1iiA] 研究结果包括:

  • 多西他赛与紫杉醇的DFS总体比较无差异(比值比[OR]为1.03;95%CI,0.91-1.16;P =0.61),在单周和三周方案之间(OR为1.06;95%CI,0.94-1.20;P=0.33)也无差异。
  • DFS(0.003)和OS(0.01)与给药时间有显著相关性。因此,与每3周给予紫杉醇相比,每周给予紫杉醇可改善DFS(OR为1.27;95%CI,1.01-1.57;P=0.006)和OS(OR为1.32;95%CI,1.02-1.72;P=0. 01)。
  • 在DFS上,每3周给予多西他赛也优于每3周给予紫杉醇(OR为1.23;95%CI,1.00-1.52;P=0.02),但OS的差异无统计学意义(OR为1.13;95%CI,0.88-1.46;P=0.25)。
  • 多西他赛的周疗方案并不优于每3周给予一次紫杉醇的方案。没有明确的前期实验基础证实,改变给药的时间是否会对这两种药物产生相反的效果。
  • 化疗计划:剂量密度

    历史上,乳腺癌的辅助化疗是每3周进行一次。有研究试图确定减少化疗周期之间的持续时间是否可以改善临床结果。这些研究的总体结果支持对HER2阴性的乳腺癌患者使用剂量密集型化疗。

    证据(HER2阴性乳腺癌患者给予高剂量化疗):

  • 一项美国的组间试验(CLB-9741 [NCT00003088])对2005名淋巴结阳性患者进行了比较,在2×2析因设计,同步使用AC,随后使用紫杉醇联合阿霉素、紫杉醇和环磷酰胺,每2周或每3周使用非格司亭。
  • [证据等级:1iiA]
  • 中位随访68个月,在所有患者群体中,剂量密集型治疗改善了主要终点DFS(HR为0.80;P=0.018),但OS没有改善(HR为0.85;P=0.12)。
  • [证据等级:1iiA]
  • 密度与顺序之间不存在相互作用。
  • 严重的中性粒细胞减少在接受剂量密集疗法的患者中较少发生。
  • [证据等级:1iiA]
  • 一项意大利试验(NCT00433420)比较了2周和3周剂量的表柔比星加环磷酰胺(含或不含5-FU)的析因设计,结果与美国的组间试验相似;然而,该试验还证明了OS存在差异。
  • 在剂量-密度比较中,每2周治疗的患者的5年DFS为81%(95% CI,79-84),每3周治疗的患者的5年DFS为76%(95% CI,74-79) (HR为0.77;95%CI,0.65-0.92;P=0.004)。
  • 5年的OS率分别为94%(95% CI,93-96)和89%(95% CI,87-91);HR为0.65;0.51-0.84;P=0.001)。
  • [证据等级:1iiA]
  • 一项关于剂量密度与标准剂量的荟萃分析包括了来自八个试验的数据,包括17188名患者。
  • 与接受传统剂量化疗的患者相比,接受高剂量化疗的患者具有更好的OS和DFS:OS(HR为0.86;95%CI,0.79-0.93;P=0.0001)和DFS(HR为0.84;95%CI,0.77-0.91;P<0.0001)。在ER阴性乳腺癌患者中观察到的OS获益有统计学意义(HR为0.8;P=0.002),但在ER阳性的乳腺癌患者中未观察到有统计学意义的OS获益(HR为0.93;95%CI,0.82-1.05;P=0.25)。
  • 一项包含26项随机试验的荟萃分析包括了37,298名接受含蒽环类和紫杉类药物化疗的女性患者,该分析比较了标准方案(每3-4周进行一次)和更大剂量强度的方案。通过缩短周期间隔来增加剂量强度的方案(即剂量-密度疗法或在较短的时间内给予相同的剂量),以及序贯给予单个药物以增加剂量强度的方案(即序贯方案)。
  • 接受更大剂量强化治疗的患者在10年时有更高的无复发生存率(28.0% vs.31.4%;RR为0.86;95%CI,0.82-0.89;P<0.0001)和OS(18.9% vs.21.3%;RR为0.87;95%CI,0.83-0.92,P<0.0001) 。受体阳性和受体阴性亚组间存在统计学差异。
  • 一项随机化的、III期、双盲研究(NCT01519700)显示,与美国许可的产品相比,一种生物类似药非格司亭(EP2006)在严重中性粒细胞减少症的持续时间方面不存在劣效。
  • [证据等级:1iDiv]
  • 多西他赛和环磷酰胺

    多西他赛和环磷酰胺是一种可接受的辅助化疗方案。

    证据(多西他赛和环磷酰胺):

  • 对1016例I期或II期浸润性乳腺癌患者进行了TC方案(多西他赛和环磷酰胺)与AC方案(阿霉素和环磷酰胺)的比较研究。患者被随机分配接受四个周期的TC或AC作为术后辅助治疗。
  • [证据等级:1iiA]
  • 7年后,DFS和OS均证明了四个周期的TC方案优于标准的AC方案。
  • DFS方面,TC方案明显优于AC方案(81%比75%,HR, 0.74;95%CI,0.56 - -0.98;P = .033)。
  • OS方面,TC方案明显优于AC方案(87%比82%,HR, 0.69;95%CI,0.50 - -0.97;P = .032)。
  • 与AC方案相比,TC方案出现心脏毒性作用更少,但是出现肌痛、关节痛、水肿和发热性中性粒细胞减少症状更多。
  • 术后化疗时机

    开始辅助治疗的最佳时间是不确定的。一项回顾性观察性研究报告如下:

  • 一项对1997年至2011年间确诊的早期乳腺癌患者的单机构研究显示,辅助化疗开始时间的推迟对生存结果有不利。
  • [证据等级: 3iiiA]
  • 术后61天或更长时间开始化疗与II期乳腺癌患者的不良结果(远期无复发生存率:HR为1.20;95% CI, 1.02-1.43)和III期乳腺癌患者的不良结果相关(OS:HR为1.76;95% CI,1.26-2.46;RFS:HR为1.34;95% CI,1.01-1.76;无复发生存率:HR为1.36;95% CI,1.02-1.80)。
  • 三阴性乳腺癌(TNBC)患者和接受曲妥珠单抗治疗的HER2阳性乳腺癌患者,术后61天或更久开始化疗的的生存率差于术后30天内开始化疗的患者(TNBC:HR为1.54;95% CI,1.09-2.18;HER2阳性:HR为3.09;95% CI,1.49-6.39)。
  • 由于本研究设计的缺点和局限性,辅助化疗起始的最佳时间仍不确定。
  • 化疗的毒性作用

    辅助化疗与几种典型的毒性效应有关,这些毒性效应因不同治疗方案中使用的不同药物而不同。常见的毒性效应包括:

  • 恶心和呕吐。
  • 骨髓抑制。
  • 脱发。
  • 粘膜炎。
  • 严重但不常见的毒性效应包括以下方面:

  • 心力衰竭(如果使用蒽环类药物)。
  • 血栓栓塞事件。
  • 过早绝经。
  • 第二恶性肿瘤(白血病)。
  • (请参阅PDQ总结中与治疗有关的恶心及呕吐的内容;有关粘膜炎的信息,请参阅PDQ总结中的化疗和头颈放疗的口腔并发症;有关过早绝经相关症状的信息,请参阅PDQ总结中关于潮热和盗汗的内容。)

    然而,使用含蒽环类药物的方案,尤其是那些含有环磷酰胺剂量增加的方案,与5年患急性白血病的累积风险0.2%-1.7%有关。

    接受高累积剂量表柔比星(>720mg/m2)和环磷酰胺(>6300mg/m2)的患者,这一风险会增加到4%以上。

    据报道,认知障碍发生在一些化疗方案实施后。

    然而,关于这一主题的前瞻性随机研究的数据是缺乏的。

    EBCTCG荟萃分析显示,接受辅助联合化疗的女性患对侧乳腺癌的年发病率确实降低了20%(标准偏差= 10)。

    这种小的比例降低转化为绝对收益,该收益在统计学上微不足道,表明化疗并未增加对侧疾病的风险。此外,该分析表明,在随机分配接受化疗的所有妇女中,归因于其他癌症或血管原因的死亡在统计学上的没有显着增加。

    HER2/neu阴性的乳腺癌

    对于HER2/neu阴性的乳腺癌,没有一种辅助化疗方案被认为是标准的或优于其他方案的。首选的方案因机构、地理区域和临床医生的不同而不同。

    一些关于辅助化疗益处的最重要数据来自EBCTCG,它每5年回顾分析一次全球乳腺癌试验的数据。在2011年EBCTCG荟萃分析中,使用以蒽环类为基础的辅助化疗方案与未治疗相比,复发风险有显著改善(RR为0.73;95% CI,0.68-0.79),乳腺癌死亡率显著降低(RR为0.79;95% CI,0.72-0.85),总体死亡率显著降低(RR为0.84;95% CI,0.78-0.91),即绝对生存获益为5%。

    三阴性乳腺癌(TNBC)

    TNBC被定义为ER、PR和HER2/neu阴性。TNBC对一些最有效的乳腺癌治疗方法不敏感,包括HER2靶向治疗(如曲妥珠单抗)和内分泌治疗(如他莫昔芬或芳香化酶抑制剂)。

    联合化疗

    剂量-密集或节拍方案联合细胞毒药物化疗,仍是早期TNBC的标准治疗。

    证据(TNBC的剂量-密集或节拍方案的新辅助化疗):

  • 一项前瞻性分析研究了1118名在单一中心接受新辅助化疗的患者,其中255人(23%)患有TNBC。
  • [证据等级:3iiDiv]
  • 研究发现,TNBC患者的病理完全缓解率(pCR)高于非TNBC患者(22% vs.11%);P=0.034)。pCR率的提高可能很重要,因为在一些研究中,pCR与长期结果的改善相关。
  • 铂类药物

    铂类药物已成为治疗TNBC的重要药物。然而,在临床试验之外,将它们添加到早期TNBC的治疗中还没有确定的作用。一项试验对28名II期或III期TNBC女性进行了4个周期的顺铂新辅助治疗,结果pCR率为22%。

    [证据水平:3iiiDiv]一项随机临床试验CALGB-40603 (NCT00861705),评估了在新辅助方案下,紫杉醇、阿霉素加环磷酰胺化疗方案中加入卡铂的益处。Triple Negative试验(NCT00532727)评估在存在转移的情况下,卡铂与多西他赛的疗效。这些试验将有助于确定铂类药物治疗TNBC的作用。

    多聚(ADP-核糖)聚合酶(PARP)抑制剂

    PARP抑制剂对BRCA突变患者和TNBC患者的疗效正在临床试验中被评估。

    PARPs是一组参与多种细胞进程的酶,其中包括DNA修复。由于TNBC与BRCA突变的乳腺癌具有多种相似的临床病理特征,即庇护功能失调的DNA修复机制,因此,PARP抑制剂与依赖于BRCA机制的DNA修复缺失相结合,可能会导致合成致死和细胞死亡的增加。

    HER2/neu阳性的乳腺癌

    HER2阳性的早期乳腺癌的标准治疗是一年的辅助曲妥珠单抗治疗。

    曲妥珠单抗

    一些III期临床试验探讨了抗HER2/neu抗体曲妥珠单抗作为HER2过表达癌症患者辅助治疗的作用。研究结果证实了辅助曲妥珠单抗治疗12个月的疗效。

    证据(曲妥珠单抗治疗时长):

    Herceptin Adjuvant(HERA)(BIG-01-01[NCT00045032])试验检测了在基础治疗结束后使用曲妥珠单抗作为HER2阳性乳腺癌的辅助治疗是否有效。对大多数患者来说,基础治疗包括术前或术后给予含蒽环类药物的化疗方案,加上或不加局部放疗。曲妥珠单抗在基础治疗结束后7周内每3周给予一次。

    [证据水平:1iiA]患者被随机分配到三个研究组中的其中一个:

  • 观察组(n=1693)。
  • 1年曲妥珠单抗组(n=1694)。
  • 2年曲妥珠单抗组(n=1694)。
  • 1年曲妥珠单抗组与观察组比较,患者中位年龄为49岁,约33%的患者为淋巴结阴性,接近50%的患者为激素受体(ER、PR)阴性。

  • 1年曲妥珠单抗组对比观察组:
  • 在中位随访11年后,
  • 研究发现,1年曲妥珠单抗改善了DFS(HR为0.76;95% CI,0.68-0.86;10年的DFS为 72% vs.66%;P<0.0001),尽管观察到52%的患者存在治疗交叉。
  • 1年曲妥珠单抗也能改善OS(HR为0.74;95% CI,0.64-0.86;12年的OS为 79% vs.73%;P<0.0001)。
  • [证据等级:1iiA]
  • 1年与2年曲妥珠单抗对比:
  • 中位随访11年后观察发现,延长1年曲妥珠单抗对DFS没有益处(HR为1.02;95% CI,0.89-1.17)。
  • 症状性心脏事件发生率在曲妥珠单抗组为1%,观察组为0.1%。
  • 在NSABP-B-31 (NCT00004067)和NCCTG-N9831 (NCT00005970)试验的联合分析中发现,曲妥珠单抗是每周给药,通常是在AC紫杉醇方案的紫杉醇给药后同时或随后使用。
  • [证据等级:1iiA]
  • HERA的结果在两项研究的联合分析中得到证实,共入组3676名患者。分析中观察到,DFS的改善有极为显著的统计学意义(HR为0.48;P<0.001;3年的DFS为 87% vs.75%),OS显著改善(HR为0.67;P=0.015;3年的OS,曲妥珠单抗组为94.3%,对照组为91.7%;4年的OS,曲妥珠单抗组为91.4%,对照组为86.6%)。
  • 接受曲妥珠单抗治疗的患者的DFS较长,DFS事件的风险降低了52%(HR为0.48;95%CI,0.39-0.59;P<0.001),对应的3年和4年的DFS的绝对差值分别为11.8%和18%。曲妥珠单抗治疗的患者远处复发的风险降低了53%(HR为0.47;95% CI,0.37-0.61;P<0.001),死亡风险降低了33%(HR为0.67;95%CI,0.48-0.93;P=0.015)。
  • 在一项更新的分析中,中位随访时间为8.4年,化疗中加入曲妥珠单抗可使OS相对改善37%(HR为0.63;95% CI,0.54-0.73;P<0.001),并将10年的OS率从75.2%提高到84%。
  • 在BCIRG-006(NCT00021255)试验中,3222名HER2过表达的早期乳腺癌患者被随机分配接受AC+多西他赛(AC-T)、AC+多西他赛+曲妥珠单抗(AC-T+曲妥珠单抗)、或多西他赛、卡铂+曲妥珠单抗(TCH,非含蒽环类的方案)治疗。
  • [证据等级:1iiA]
  • 与未接受曲妥珠单抗治疗的对照组相比,接受曲妥珠单抗治疗的两组患者在DFS和OS方面都有显著的改善。
  • 接受AC-T联合曲妥珠单抗的患者的5年的DFS率为84%(与AC-T比较的HR为0.64;P<0.001),OS率为92%(HR为0.63;P<0.001)。对于接受TCH的患者,5年的DFS率为81%(HR为0.75;P=0.04),OS率91%(HR为0.77;P=0.04点)。对照组的5年的DFS为75%,OS为87%。
  • 作者指出,两种含曲妥珠单抗的方案在DFS或OS方面没有显著差异。然而,这项研究并没有发现两种含有曲妥珠单抗的方案之间的等效性。
  • AC-T+曲妥珠单抗组的充血性心力衰竭(CHF)及心功能障碍的发生率明显高于TCH组(P<0.001)。
  • 这些试验结果提出了一个问题,即在HER2过表达乳腺癌的辅助治疗中是否需要蒽环类药物。接受AC-曲妥珠单抗治疗组与TCH组相比,具有一个小的但差异无统计学意义的获益。
  • 本试验支持TCH方案作为HER2过表达早期乳腺癌患者的辅助治疗方案,特别是那些担心心脏毒性作用的患者。
  • 芬兰赫赛汀(FINHER)研究评估了短疗程曲妥珠单抗的疗效。在这项试验中,232名67岁以下、淋巴结阳性或高风险(肿瘤大小>2cm)的淋巴结阴性的HER2过表达的女性乳腺癌患者,行FEC治疗后,连续9周每周1次注射曲妥珠单抗联合多西他赛或长春瑞滨。
  • [证据等级:1iiA]
  • 在3年的中位随访中,接受曲妥珠单抗治疗的患者的复发和/或死亡风险显著降低(HR,0.41;P=0.01;95% CI,0.21-0.83;3年的DFS, 89% vs.78%)。
  • OS(HR,0.41)的差异无统计学意义(P0=0.07;95%CI,0.16-1.08)。
  • 一些研究将应用曲妥珠单抗6个月与12个月进行了比较。
  • 在PHARE (NCT00381901)试验的中期分析中,12个月组的2年的DFS率为93.8%(95% CI,92.6-94.9),6个月组的为91.1% (89.7-92.4)(HR,1.28;95%CI,1.05-1.56;非劣效,P =0.29)。
  • [证据等级:1iiA]
  • 在最终分析中,观察704个事件后,调整后的HR为1.08 (95% CI, 0.93-1.25),未排除预先设定的非劣效HR 1.15。
  • 由希腊肿瘤研究小组牵头的对481名患者进行的一项较小规模的研究得出了类似的结果。
  • [证据等级:1iiA]
  • 相反,在PERSEPHONE (NCT00712140)试验中,4088名患者在分析时经历了512次DFS事件,排除了预先设定的非劣效界值(HR,1.07;90% CI,0.93-1.24;非劣效,P=0.011)。
  • [证据等级:1iiA]
  • 一些研究评估了曲妥珠单抗皮下注射在新辅助治疗和辅助治疗中的适用性。

    辅助曲妥珠单抗对心脏的毒性作用

    许多研究报告了与辅助曲妥珠单抗相关的心脏事件。主要研究结果包括:

  • 在HERA (BIG-01-01)试验中,接受曲妥珠单抗治疗的患者中有0.6%的患者出现严重CHF(纽约心脏协会III-IV级)。
  • 曲妥珠单抗组和观察组的有症状的CHF的发生率分别为1.7%和0.06%。
  • 在NSABP B-31 (NCT00004067)试验中,曲妥珠单抗组的850名患者中有31人确认为有症状的心脏事件,而对照组的814名患者中有5人确认为有症状的心脏事件。
  • 接受曲妥珠单抗治疗的患者的3年累积心脏事件发生率为4.1%,而对照组患者的心脏事件发生率为0.8% (95% CI,1.7%-4.9%)。
  • 在NCCTG-N9831试验中,三组患者在3年时间内共报告了39例心脏事件。3年的心脏事件的累积发生率在A组中为0.35%(无曲妥珠单抗),在B组中为3.5%(在紫杉醇治疗后使用曲妥珠单抗),在C组中为2.5%(与紫杉醇同时使用曲妥珠单抗)。
  • 在AVENTIS-TAX-GMA-302(BCIRG 006)(NCT00021255)试验中,AC/多西他赛(AC-D)组的0.38%、AC/多西他赛/曲妥珠单抗(AC-DH)组的1.87%、多西他赛/卡铂/曲妥珠单抗(DCbH)组的0.37%的患者出现了临床症状性心脏事件。
  • 与AC-D组和DCbH组相比,AC-DH组的左心室射血分数(LVEF)无症状持续下降的发生率也有统计学意义。
  • 在FINHER试验中,接受曲妥珠单抗治疗的患者临床上均未出现严重的心脏不良事件。所有接受曲妥珠单抗治疗的女性均观察了LVEF,但接受辅助曲妥珠单抗治疗的患者数量非常少。
  • 拉帕替尼

    拉帕替尼是一种小分子酪氨酸激酶抑制剂,能够同时抑制表皮生长因子受体和HER2。没有数据支持使用拉帕替尼作为早期HER2/neu阳性乳腺癌辅助治疗的一部分。

    证据(反对使用拉帕替尼治疗HER2阳性的早期乳腺癌):

  • 在辅助剂拉帕替尼和/或曲妥珠单抗治疗优化试验(ALTTO[NCT00553358])中,研究了拉帕替尼(与曲妥珠单抗联合、顺序、比较或作为其替代)在辅助环境中的作用。
  • [证据等级:1iiA]
  • 在主要分析中,中位随访时间为4.5年(范围为1天-6.4年),拉帕替尼加曲妥珠单抗组与单曲妥珠单抗组相比,DFS的HR降低了16%(555例DFS;HR,0.84;97.5%CI,0.70-1.02;P=0.048),在0.025显著性水平上无统计学意义。
  • 在意向治疗人群中,曲妥珠单抗联合拉帕替尼与单曲妥珠单抗的优效性比较的DFS的HR为0.96(97.5% CI,0.80-1.15;P=0.61)。
  • 拉帕替尼加曲妥珠单抗组的4年的OS为95%,单纯曲妥珠单抗组的4年的OS为94%。比较拉帕替尼加曲妥珠单抗与单曲妥珠单抗的OS的HR为0.80(95% CI,0.62-1.03;P=0.078),比较曲妥珠单抗替换为拉帕替尼与单纯曲妥珠单抗的HR为0.91(95%CI,0.71-1.16;P=0.433)。
  • 本研究停止了拉帕替尼对比曲妥珠单抗组的研究,因为在中期分析时,单用曲妥珠单抗的DFS的HR为1.52,因非劣效性被排除。
  • 与单纯曲妥珠单抗相比,拉帕替尼和曲妥珠单抗联合治疗还会导致3级腹泻(15% vs.1%)的加重、3级皮疹(5% vs.1%)和3级肝胆不良事件(3% vs.1%)。
  • 帕妥珠单抗

    帕妥珠单抗是一种人源化的单克隆抗体,可与HER2受体胞外区域的一个独特的位点结合,能够抑制二聚作用。它与曲妥珠单抗的联合应用已经在术后的随机试验中进行了评估。

    证据(帕妥珠单抗):

  • 乳腺组间试验(BIG)纳入了4805名HER2阳性女性乳腺癌患者,并进行了为期12个月的曲妥珠单抗加安慰剂与为期12个月的曲妥珠单抗加帕妥珠单抗的盲法比较研究,这两种药物均与标准化疗和激素治疗联合使用。
  • 在主要终点(乳腺癌,RFS)的最终分析时,存在支持联合方案的显著性的差异(HR,0.81;95%CI,0.66-1.00;P=0.045;3年的浸润性DFS,94.1% vs.93.2%)。
  • 在这个终点的第一次中期分析中,OS没有统计学上的显著差异。
  • 接受帕妥珠单抗的患者有更多的3级腹泻(9.8% vs.3.7%),且更可能发展为心力衰竭(0.6% vs.0.2%)。
  • 来那替尼

    来那替尼是HER1、HER2和HER4的不可逆酪氨酸激酶抑制剂,已被FDA批准用于早期HER2阳性乳腺癌患者的辅助治疗,以辅助曲妥珠单抗治疗。

    证据(来那替尼):

  • 在ExteNET (NCT00878709)试验中,研究了在随机化前2年完成新辅助曲妥珠单抗治疗的早期HER2阳性乳腺癌患者(n=2840),应用12个月来那替尼的安全性和有效性。患者每天口服240mg来那替尼或服用安慰剂,持续1年。
  • [证据等级:1iiA]
  • 主要终点为浸润性DFS。
  • 在中位随访5.2年后(四分位间距为2.1-5.3),来那替尼组患者的iDFS事件明显少于安慰剂组(来拉替尼组为116例,安慰剂组为163例;分层HR,0.73;95%CI,0.57-0.92;P=0.0083)。来那替尼组的5年的iDFS为90.2%(95% CI,88.3-91.8),安慰剂组为87.7%(85.7-89.4)。
  • OS的数据不成熟。
  • 最常见的1-2级不良事件包括腹泻(来那替尼,55% vs.安慰剂,34%)、恶心(41% vs. 21%)、疲劳(25% vs. 20%)、呕吐(23% vs. 8%)和腹痛(22% vs. 10%)。FDA推荐在治疗的前56天使用预防性洛哌丁胺,并在治疗后根据需要帮助控制腹泻。
  • 最常见的3-4级不良事件是腹泻(来那替尼,40% vs.安慰剂,2%)。所有其他3至4级不良事件发生在2%或更少的患者中。
  • 激素受体阳性的乳腺癌

    以下有关激素受体阳性疾病女性治疗的章节中展示的许多证据已被一份美国临床肿瘤学协会的指南考虑到,该指南中描述了对这些患者管理的几种治疗方案。

    5年的辅助内分泌治疗已被证明可以显著降低局部和远处复发、对侧乳腺癌和乳腺癌死亡的风险。

    内分泌治疗的最佳治疗时长尚不清楚,有大量证据支持至少5年的内分泌治疗。一个对88项临床试验的荟萃分析显示,经过5年的内分泌治疗后,62,923名激素受体阳性的乳腺癌患者在诊断后5至20年内有稳定的晚期复发风险。

    [证据水平:3iiiD]远处复发的风险与原发肿瘤(T)和淋巴结(N)状态相关,风险范围为10%-41%。

    他莫昔芬

    他莫昔芬已被证明对激素受体阳性的乳腺癌女性有益。

    证据(他莫昔芬用于激素受体阳性的早期乳腺癌):

  • EBCTCG在144,939名I期或II期乳腺癌患者的随机试验中,对激素、细胞毒药物或生物治疗方法对早期乳腺癌的系统性治疗进行了荟萃分析。2005年发表的一项分析包括了71项他莫昔芬辅助试验中80,273名妇女的信息。
  • [证据等级:1iiA]
  • 在这项分析中发现,他莫昔芬的益处仅限于激素受体阳性或激素受体未知的乳腺癌患者。在这些女性中,15年绝对减少12%的复发率和9%的死亡率与他莫昔芬用药5年相关。
  • 大约5年的他莫昔芬辅助治疗可使乳腺癌的年死亡率降低31%,这在很大程度上与使用化疗、年龄(<50岁、50-69岁、≥70岁)、PR状态或其他肿瘤特征无关。
  • 这项荟萃分析还证实了他莫昔芬辅助治疗对激素受体阳性的绝经前女性的益处。50岁以下的女性从5年服用他莫昔芬中有一定程度的获益,这与老年女性的获益相似。此外,使用他莫昔芬后复发率和死亡率的降低比例在淋巴结阴性和阳性的患者间是相似的,但淋巴结阳性组10年生存率的绝对改善更大(用药5年,5.3% vs.12.5%)。
  • 在IBCSG-13-93试验中也发现了类似的结果。
  • 在1246名II期患者中,只有激素受体阳性的患者从他莫昔芬中获益。
  • EBCTCG荟萃分析和一些大型随机试验已经确定了他莫昔芬的最佳使用时间。

    10年的他莫昔芬治疗已被证明优于较短时间的他莫昔芬治疗。

    证据(他莫昔芬治疗时间):

  • EBCTCG荟萃分析表明,他莫昔芬应用5年优于较短的使用时间。结果报告如下:
  • 5年与1至2年他莫昔芬相比,在降低复发风险方面具有显著优势(比例降低15.2%;P<0.001),而在降低死亡率方面不太有显著的优势(比例降低7.9%;P=0.01)。
  • 他莫昔芬辅助治疗的长期随访Adjuvant Tamoxifen Longer Against Shorter(ATLAS [NCT00003016])表明,10年的他莫西芬治疗优于5年的他莫昔芬治疗。在1996年到2005年间,12,894名患有早期乳腺癌的女性被随机分配接受10年或5年的他莫昔芬治疗。结果报告如下:
  • [证据等级:1iiA]
  • 研究结果显示,服用他莫昔芬10年降低了乳腺癌复发的风险(服用他莫昔芬10年有617例复发 vs.服用他莫昔芬5年有711例复发;P=0.002),降低乳腺癌死亡率(服用他莫昔芬10年有331例死亡 vs.服用他莫昔芬5年有397例死亡;P=0.01),和降低总死亡率(10年服用他莫昔芬639例死亡 vs. 5年服用他莫昔芬722例死亡;P =0.01)。
  • 值得注意的是,从乳腺癌最初确诊时间开始,10年治疗的效果在10年后就没有那么好了。从确诊后15年,乳腺癌的死亡率在10年为15%,5年为12.2%。
  • 与5年相比,10年的他莫昔芬治疗增加了以下风险:
  • 肺栓塞 RR为1.87;(95% CI,1.13-3.07;P=0.01)。
  • 中风 RR为1.06;(95% CI,0.83-1.36)。
  • 缺血性心脏病 RR为0.76;(95% CI,0.6-0.95;P=0.02)。
  • 子宫内膜癌 RR为1.74;(95% CI,1.30-2.34;P=0.0002)。值得注意的是,接受他莫昔芬治疗10年的女性在5至14年间患乳腺癌的累计风险为3.1%,而接受他莫昔芬治疗5年的女性为1.6%。5至14年的死亡率为12.2,而15年的绝对死亡率下降2.8%。
  • ATLAS试验的结果表明,对于服用他莫昔芬5年仍未绝经的女性,继续服用他莫昔芬5年是有益的。

    服用他莫昔芬5年后进入绝经期的女性也可以用AIs进行治疗。(更多信息,请参阅本总结中激素受体阳性治疗部分的芳香化酶抑制剂部分内容。)

    他莫昔芬和化疗

    由于EBCTCG分析的结果,在接受辅助化疗的女性中使用他莫昔芬并不会减弱化疗的益处。

    然而,与顺序给药相比,他莫昔芬与化疗同时使用的效果较差。

    卵巢去势、他莫昔芬、和化疗

    有证据表明,单纯的卵巢去势并不能有效替代其他的全身疗法。

    此外,在化疗和/或他莫昔芬治疗中加入卵巢去势并没有发现预后的明显改善。

    证据(他莫昔芬+卵巢抑制):

  • 最大的一项(SOFT[NCT00066690])验证在他莫昔芬基础上增加卵巢去势,联合或不联合化疗的研究,随机分配2033名绝经前女性(其中53%曾接受过化疗)接受他莫昔芬或他莫昔芬加卵巢抑制(使用曲普瑞林抑制卵巢或手术切除或放疗消融)。
  • [证据等级:1iiDii]
  • 在初次报告中,中位随访时间为5.6年,主要结果DFS无显著差异(HR,0.83;95%CI,0.66-1.04;P=0.10);他莫昔芬+卵巢抑制组的5年的DFS为86%,而单纯他莫昔芬组的5年DFS为84.7%。然而,中位随访8年的更新结果显示,与单纯使用他莫昔芬相比,使用他莫昔芬加卵巢抑制可改善DFS(HR,0.76;95% CI,0.62-0.93;P=0.009);他莫昔芬+卵巢抑制组的8年的DFS为83.2%,而单纯他莫昔芬组的DFS为78.9%。此外,与单纯他莫昔芬相比,他莫昔芬联合卵巢抑制可改善8年时的OS(HR,0.67;95%CI,0.48-0.92;P=0.01);8年的OS在他莫昔芬+卵巢抑制组为93.3%,而在单纯他莫昔芬组为91.5%。
  • 尽管初步结果总体呈阴性,但亚组分析显示,卵巢抑制对化疗后仍未绝经的女性有益处。然而,8年的随访结果并没有根据是否给予化疗而显示出治疗效果的异质性,尽管在接受化疗的患者中复发更为常见。

    芳香化酶抑制剂(AIs)

    绝经前女性

    在卵巢功能被抑制或切除的绝经前女性中,AIs与他莫昔芬进行了比较。这些研究的结果是相互矛盾的。

    证据(绝经前女性AI与他莫昔芬的比较):

  • 在一项研究(NCT00295646)中,1803名接受戈舍瑞林治疗的女性被随机分配到一个2×2的析因设计的试验中,该试验比较了阿那曲唑和他莫昔芬疗效,有或无唑来膦酸。
  • 中位随访62个月,DFS无差异(HR,1.08;95%CI,0.81-1.44;P=0.59)。
  • 他莫昔芬组的OS更优(HR,1.75;95%CI,1.08-2.83;P=0.02)。
  • 一起分析的两项非盲研究(TEXT [NCT00066703]和SOFT [NCT00066690]),在4690名接受卵巢去势的绝经前女性中,将依西美坦和他莫昔芬进行了比较。
  • 使用依西美坦带来了DFS的显著差异(HR,0.77;95%CI,0.67-0.90;P<0.01;8年的DFS,依西美坦-卵巢抑制组为86.8%,他莫昔芬-卵巢抑制组为82.8%)。
  • [证据等级:1iDii]
  • 依西美坦-卵巢抑制组的8年无远处复发率也较高(HR,0.80;95%CI,0.66-0.96;P=0.02);依西美坦抑制组的8年无远处复发率为91.8%,而他莫昔芬抑制组的8年无远处复发率为89.7%。
  • 尽管DFS和无远处复发率有了改善,但依西美坦联合卵巢抑制与他莫昔芬联合卵巢抑制在OS上无差异(HR,0.98;95%CI,0.79-1.22;P=0.84;8年的生存率,依西美坦-卵巢抑制组为93.4%,他莫昔芬-卵巢抑制组为93.4%)。
  • [证据等级:1iiA]
  • 一份关于依西美坦-卵巢抑制组与他莫昔芬-卵巢抑制组生活质量差异的随访报告观察到如下情况(以下引用的差异均在P<0.001时显著,且发生在接受和未接受化疗的患者中):
  • 接受他莫昔芬联合卵巢功能抑制的患者5年内潮热、盗汗症状明显多于接受依西美坦联合卵巢功能抑制治疗的患者,尽管这些症状有所改善。
  • 依西美坦加卵巢功能抑制的患者比他莫昔芬加卵巢功能抑制的患者报道了更多的阴道干涩、更严重的性欲丧失、性唤起困难;这些差异随时间持续存在。
  • 服用依西美坦加卵巢功能抑制的患者骨痛或关节痛的增加更为明显,尤其是在短期内,多于服用他莫昔芬加卵巢功能抑制的患者。
  • 全球生活质量指标与基线相比变化很小,而且在5年的不同治疗之间变化相似。
  • [证据等级:1iC]
  • 绝经后女性

    在绝经后女性中,AIs与他莫昔芬的顺序使用或作为其替代品已成为多项研究的主题,其结果已在个体患者水平的荟萃分析中进行了总结。

    初始治疗

    证据(AI vs.他莫昔芬作为绝经后女性的初始治疗):

  • 一项有9,366名患者参加的大型随机试验,比较了绝经后淋巴结阴性或淋巴结阳性患者使用阿那曲唑联合他莫昔芬与单纯他莫西芬作为辅助治疗的效果。研究中的大多数患者(84%)是激素受体阳性。略多于20%的患者接受了化疗。
  • [证据等级:1iDii]
  • 中位随访时间为33.3个月,联合用药组与单纯他莫昔芬组相比,DFS无明显改善。
  • 然而,服用阿那曲唑的患者的DFS(HR,0.83)明显长于服用他莫昔芬的患者。在对激素受体阳性患者进行中位随访100个月后的分析中,服用阿那曲唑的患者DFS明显延长(P=0.003)(HR,0.85;95% CI,0.76-0.94),但OS没有改善(HR,0.97;95%CI,0.86-1.11;P=0.7)。
  • 服用他莫昔芬的患者更容易发生子宫内膜癌和脑血管意外,而服用阿那曲唑的患者则更容易发生骨折。两组心肌梗死的发生率相似。除了他莫昔芬组子宫内膜癌发病率持续增加外,这些差异在治疗结束后并未持续存在。
  • 对8010名激素受体阳性乳腺癌绝经后女性进行的一项大型、双盲、随机试验,比较了来曲唑与他莫昔芬连续用药5年或交叉用药2年的疗效。
  • 国际乳腺癌研究小组的一项最新分析(IBCSG-1-98[NCT00004205])报告了4922名接受他莫昔芬或来曲唑治疗5年的女性的结果,中位随访时间为51个月。
  • [证据等级:1iDii]
  • 来曲唑组的DFS明显优于他莫昔芬组(HR,0.82;95%CI,0.71-0.95;P=0.007;5年的DFS,84.0% vs.81.1%)。
  • 来曲唑组的OS无显著性差异(HR,0.91;95%CI,0.75-1.11;P =0.35)。
  • 在纳入了来自多个临床试验的9885名女性的荟萃分析中,AI组的10年复发风险为19.1%,他莫昔芬组为22.7% (RR,0.80;95%CI,0.73-0.88;P<0.001)。10年的总死亡率也从24.0%降至21.3%(RR, 0.89;95%CI,0.8-0.97;P=0.01)。
  • [证据等级:1A]
  • 序贯服用他莫昔芬和AI对比服用5年的他莫昔芬

    一些试验和荟萃分析已经检验了在服用他莫昔芬2至3年后改用阿那曲唑或依西美坦完成5年内分泌治疗的效果。

    如下所述的证据表明,序贯服用他莫昔芬和AI优于连续服用他莫昔芬5年。

    证据(序贯他莫昔芬和AI vs.他莫昔芬 5年):

  • 同一组按顺序进行的两项试验共纳入828例患者,并进行了汇总报道:一项试验使用氨鲁米特作为AI,另一项试验使用阿那曲唑。中位随访78个月后,AI组观察到全因死亡率有所改善(HR,0.61;95%CI,0.42-0.88;P=0.007)。
  • [证据等级:1iiA]
  • 另外两项试验一起被报道了。
  • 3224例患者在服用他莫昔芬2年后被随机分配继续服用他莫昔芬5年或服用阿那曲唑3年。无事件生存(EFS)有显著差异(HR,0.80;95% CI,P =0.0009),但不包括OS(5年的OS,切换组为97% CI vs. 单纯他莫昔芬组为96% CI;P =0.16)。
  • [证据等级:1iDii]
  • 一项大型、双盲、随机试验(EORTC-10967 [ICCG-96OEXE031-C1396-BIG9702]) (NCT00003418)中,4742名接受了2-3年的他莫昔芬治疗后的患者,比较了继续服用他莫昔芬至5年和改用依西美坦治疗至5年的差异。
  • [证据等级:1iDii]
  • 在第二次中期分析后,当研究中位随访时间为30.6个月时,由于依西美坦组的DFS(HR,0.68)存在高度显著性差异(P<0.005),结果得以公布。
  • 中位随访55.7个月后,DFS的HR为0.76(95% CI,0.66-0.88;P=0.001),这一结果支持依西美坦。
  • [证据等级:1iA]
  • 在随机分配后2.5年,依西美坦的患者中,有3.3%的患者发生DFS事件(95% CI,1.6-4.9)。OS的HR为0.85(95% CI,0.7-1.02;P=0.08)。
  • 在一项荟萃分析中,包括来自6个试验的11798名患者,含AI组的10年复发率从19%降至17%(RR, 0.82;95%CI,0.75-0.91;P=0.001)。他莫昔芬组的10年总死亡率为17.5%,而含AI组的10年总死亡率为14.6% (RR,0.82;95%CI,0.73-0.91;P=0.0002)。

    [证据等级:1A]

    序贯服用他莫昔芬和AI 5年对比单纯服用AI 5年

    证据表明序贯使用他莫昔芬和AI5年相比单纯使用AI5年并没有获益。

    证据(他莫昔芬和AI的序贯使用 vs.AI 5年):

  • 一个大型、随机化的、有9779名患者参加的试验,比较了绝经后激素受体阳性乳腺癌患者在初始治疗中服用他莫昔芬2.5到3年后序贯服用依西美坦至5年,与仅服用依西美坦5年的DFS的差异。主要终点是2.75年和5.0年的DFS。
  • [证据等级:1iDii]
  • 连续治疗组的5年DFS为85%,仅单纯依西美坦组为86%(HR,0.97;95%CI,0.88-1.08;P=0.60)。
  • 类似地,在IBCSG 1-98(NCT00004205)试验中,两药序贯治疗组与5年来曲唑治疗组进行比较。
  • [证据等级:1iDii]
  • 与5年来曲唑组相比,两药序贯组的DFS没有差异(来曲唑与他莫西芬的HR为1.06;95%CI,0.91-1.23;P=0.45,他莫昔芬与来曲唑的HR为1.07;95%CI,0.92-1.25;P=0.36)。
  • 未被纳入荟萃分析的FATA-GIM3(NCT00541086)试验比较了他莫昔芬治疗2年后三种AIs中的一种治疗3年和AI治疗5年。两种方法的5年DFS无显著性差异(药物转换组为88.5%;前期AI组为89.8%;HR,0.89;95%CI,0.73-1.08;P=0.23)。
  • 在包括来自试验的12779名患者的荟萃分析中,接受5年AI治疗的组中的7年复发率从14.5%略微降低到13.8%(RR,0.90;95%CI,0.81-0.99;P=0.045)。7年的总死亡率,他莫昔芬后AI组为9.3%,单纯AI组为8.2%(RR,0.89;95%CI,0.78-1.03;P=0.11)。

    [证据等级:1A]

    一种AI 5年 vs.另一种AI 5年

  • 依西美坦温和的雄激素活性促使一项随机试验,来评估依西美坦是否可能比阿那曲唑更被偏好,就其疗效(即 EFS)和毒性而言,作为诊断为激素受体阳性乳腺癌的绝经后女性的前期治疗。
  • [证据水平:1iiA] MA27(NCT00066573)试验随机分配了7576名绝经后女性接受5年的阿那曲唑或依西美坦。
  • 中位随访4.1年时,未见疗效差异(HR,1.02;95%CI,0.87-1.18;P=0.86)。
  • [证据等级:1iiD]
  • 两种治疗方法对骨密度和骨折率的影响也没有显著差异。
  • [证据等级:1iiD]
  • 在Femara对比Anastrozole临床评价(FACE[NCT00248170])研究中,4136例激素受体阳性的患者被随机分配接受来曲唑或阿那曲唑。
  • 当计划的959个事件中有709个进行最终分析时,DFS无显著差异(HR,0.93;95%CI,0.80-1.07;P=0.3150)。
  • 两组患者的不良事件无显著差异。
  • 在FATA-GIM3试验中,3697例HR阳性的患者被随机分配接受三种AI持续5年或服用他莫昔芬2年后接受AI。三种AI中观察到的5年的DFS无显著差异(阿那曲唑组为90.0%,依西美坦组为88.0%,来曲唑组为89.4%;P=0.24)。
  • 服用他莫昔芬5年后改用AI

    如下所述的证据表明,在服用他莫昔芬5年后改用AI比当时停用他莫昔芬要好。

  • 5187名患者参与的一项大型、双盲、随机化试验(CAN-NCIC-MA17[NCT00003140]),比较了接受他莫昔芬治疗约5年(范围为4.5-6.0年)的受体阳性的绝经后女性使用来曲唑与安慰剂的情况。
  • [证据等级:1iDii]
  • 在首次计划的中期分析后,当本研究中患者的中位随访时间为2.4年时,由于DFS(HR,0.57)的高度显著性差异(P<0.008),试验被揭盲了,支持来曲唑组。
  • 经过3年的随访,来曲唑组的女性中4.8%出现了肿瘤复发或新原发,而安慰剂组的女性中这一比例为9.8%(差异的95%CI为2.7%-7.3%)。由于这项研究的早期揭盲,关于来曲唑在这种情况下的风险和获益的长期比较数据将无法获得。
  • 一个更新的包括所有揭盲前事件的分析证实了中期分析的结果。
  • 此外,接受来曲唑治疗的患者,其远处DFS有统计学意义上的改善(HR,0.60;95%CI,0.43-0.84;P =0.002)。虽然在总体研究人群中未发现有统计学意义上的差异,但接受来曲唑治疗的淋巴结阳性患者的OS也有统计学意义上的改善(HR,0.61;95%CI,0.38-0.98;P=0.04),尽管多次比较后P值没有得到纠正。
  • 以比较服用他莫昔芬5年后服用依西美坦5年和服用安慰剂的情况为目的NSABP B-33(NCT00016432)试验在CAN-NCIC-MA17试验的结果出现时被提前终止了。在分析的时候,783名随机分配接受依西美坦的患者中有560名仍然服用该药,而779名随机分配接受安慰剂的患者中有344名已经转为了服用依西美坦治疗。
  • [证据等级:1iDii]
  • 对主要研究终点DFS的意向治疗分析显示,依西美坦的疗效不显著(HR,0.68;P=0.07)。
  • AI治疗时间

    AI治疗的最佳时间是不确定的,且多项试验评估的疗程超过5年。

    关于初始AI辅助治疗5年后,继续延长内分泌治疗的证据:

  • 一项双盲、随机化的、III期试验评估了在1918名接受了5年AI治疗的女性中增加5年来曲唑对比安慰剂的疗效。
  • 既往接受过他莫昔芬治疗的患者也包括在内。在这项研究中,大多数患者(70.6%)接受了4.5至6年的他莫昔芬辅助治疗,但其中很大一部分(20.7%)最初接受了AI治疗。
  • 中位随访6.3年时,主要研究终点DFS在随机分配接受来曲唑的患者中显著提高(HR,0.66;95%CI,0.48-0.91;P=0.01),5年的DFS从91%提高到95%。
  • [证据等级:1iDii]
  • OS方面无差异(HR,0.97;95%CI,0.73-1.28;P=0.83)。来曲唑组的骨折患者(14%)多于安慰剂组(9%)(P=0.001)。
  • 使用医学成果研究36项简短健康调查(SF-36)和更年期专用QOL工具(MENQOL)对QOL进行了评估。 超过85%的参与者在5年内完成了年度评估。
  • 在四项MENQOL量表或SF-36总评分中均未发现组间差异。
  • 在接受来曲唑治疗的患者中,SF-36的角色-情绪和身体疼痛评分在统计学上显著降低(P=0.03),但观察到的差异小于SF-36工具的最小临床重要差异。
  • 一项随机化的III期研究评估了额外2.5年来曲唑治疗对比5年来曲唑治疗,对1824名已接受5年一种AI治疗的女性的疗效。
  • [证据等级:1iiDii]
  • 两组的DFS事件相似(HR,0.92;95%CI,0.74-1.16)。远处无转移的间隔也相似(HR,1.06;95%CI,0.78-1.45)。
  • 亚组分析并没有发现那些患者从5年延长治疗中获益。
  • 这项研究并没有显示10年的AI治疗优于7.5年的AI治疗。
  • 一项III期试验(NSABP-B42[NCT00382070])以双盲的方式随机分配了3966名女性接受了5年的AI初次辅助治疗,或先接受了2-3年的他莫昔芬,随后又接受了5年的来曲唑或安慰剂。
  • [证据水平:1iDii]计划中的DFS分析是在中位随访6.9年后进行的。
  • 安慰剂组的7年DFS为81.3%,来曲唑组为84.7%(HR,0.85; 95%CI,0.73-0.999; P = .048)。 当考虑进行中期分析时,观察到的差异在统计学上不显着。
  • 两组间不良事件无统计学显著差异。
  • 由IBCSG (SOLE [NCT00553410)进行的一项三期试验随机分配了4,851名合格的受体阳性绝经后妇女,她们使用A1、选择性雌激素受体调节剂或同时使用两者进行5年的辅助治疗,每天接受2.5毫克来曲唑,为期5年,或者在最初4年的每一年结束时有3个月的间歇时间,但不是在最后一年。
  • 对于DFS(HR,1.08; 95%CI,0.93-1.26; P = .31)或不良事件的发生频率,间歇性治疗方案无明显优势。
  • [证据等级: 1iiDii]
  • 荷兰乳腺癌研究小组(DATA [NCT00301457])进行的一项III期试验随机分配了1,860名合格的受体阳性的绝经后妇女,这些妇女已接受了2至3年他莫昔芬的治疗,再接受3年或6年阿那曲唑的治疗(每天1 mg) 。
  • 在3年时,其中1,660名妇女没有疾病:在延长治疗组中,DFS有所改善,但无统计学意义(HR,0.79; 95%CI,0.62-1.02)。
  • [证据等级:1iiDii]在延长治疗组中,肌痛和骨质疏松/骨质减少更为常见。
  • 以摘要形式发表的第三期ABCSG-16研究纳入了3484名绝经后激素受体阳性乳腺癌妇女,她们用他莫昔芬和/或AI完成了5年内分泌治疗,用阿那曲唑进行了2年或5年延长治疗。主要终点是DFS。次要终点包括OS、对侧乳腺癌的发生时间,第二原发癌的发生时间,骨折和毒性。
  • 经过10年的随访,两个组之间的DFS没有差异(2年课程为71.1%,5年课程为70.3%,[HR为0.997;95% CI,0.86-1.15;p = 0.982])。此外,两组间的OS、第二原发癌时间和对侧乳腺癌时间没有差异。
  • 在5年的手臂中,骨折的趋势并不明显。
  • 骨修复疗法

    双膦酸盐和地诺单抗均已被评估为早期乳腺癌的辅助疗法;然而,这些药物作为早期乳腺癌辅助治疗的作用尚不清楚。与地诺单抗相比,支持二膦酸盐的证据数量更多,并且有证据支持乳腺癌死亡率-一个更具临床相关性的终点。

    证据(二膦酸盐治疗早期乳腺癌):

  • 进行了一项荟萃分析,包括来自26个任何类型双膦酸盐辅助试验的18,766名患者的个体患者数据。
  • 总的来说,二膦酸盐的使用减少了复发率(RR,0.94;95% CI,0.87–1.01;2P=.08),远处转移(RR,0.92;95% CI,0.85-0.99;2P=.03),乳腺癌死亡率(RR,0.91;95% CI,0.83-0.99;2P=.04)仅具有边缘显著性,但骨转移的减少更明确(RR,0.83;95% CI,0.73-0.94;2P=.004)。
  • 在一项预先指定的亚组分析中,在绝经前妇女中,治疗对任何结果都没有明显影响,但在11,767名绝经后妇女中,治疗使复发率显著降低(RR,0.86;95% CI,0.78-0.94;2P= .002),远处复发(RR,0.82;95% CI,0.74-0.92;2P=.0003),骨复发(RR,0.72;95% CI,0.60-0.86;2P = .0002),和乳腺癌死亡率(RR,0.82;95% CI,0.73-0.93;2P=.002)。
  • ABCSG-18 (NCT00556374)试验随机分配了3,435名接受 AI治疗的绝经后乳腺癌妇女,在AI治疗期间每6个月接受一次去氨舒美或安慰剂。
  • 当报告与骨事件相关的结果时,患者被排除,服用安慰剂的患者被允许使用活性药物。
  • 在根据原始分配进行的意向治疗分析中,二级终点DFS在随机分配接受去氨舒巴坦的患者中得到改善(HR,0.82;95% CI,0.69-0.98;P = .0260;5年期DFS,89.2%对87.3%。
  • [证据等级:1iiDii]
  • 两组的不良事件发生率相似。
  • 正在进行的III期试验(NCT01077154)正在研究II期和III期乳腺癌中骨修饰剂地诺单抗的效果。

    术前全身治疗

    术前化疗,也称为新辅助化疗,传统上用于局部晚期乳腺癌患者,以减少肿瘤体积达到可手术切除的目的。此外,术前化疗也适用于一些原发性可手术二期或三期乳腺癌患者。2005年进行的多中心随机临床试验的荟萃分析表明,给与新辅助化疗和辅助化疗相同的治疗量,新辅助化疗与辅助化疗具有相同的DFS和OS。

    [证据等级:1iiA]

    2019年,早期乳腺癌试验者合作小组使用来自10个试验的4756名妇女的个体患者数据进行了荟萃分析,这些试验比较了新辅助化疗和辅助化疗中给予的相同方案。

    与辅助治疗相比,新辅助治疗与保乳率增加相关(65%对49%)。新辅助化疗和辅助治疗在远处复发、乳腺癌死亡率或任何原因引起的死亡方面没有差异;然而,新辅助治疗与更高的15年局部复发率相关(21.4%对15.9%;比率,1.37;95% CI,1.17-1.61;P=.001)。

    [证据等级:1iiA]

    当前关于术前化疗的共识意见建议以蒽环类和紫杉类为基础的治疗,前瞻性研究表明,术前以蒽环类和紫杉烷为基础的治疗比其他方案(例如,单独使用蒽环类)具有更高的缓解率。

    [证据等级:1iiDiv]

    术前全身治疗的潜在优势是,对于那些局部晚期,无法切除的疾病,明确的局部治疗成功的可能性增加。 通过增加保乳的可能性并提供获得pCR的预后信息,它还可为精心挑选的原发性可手术疾病患者提供益处。 在这些情况下,与残留大量残留疾病的情况相比,可以告知患者复发的风险非常低。

    pCR已被用作乳腺癌术前临床试验中长期结果(如DFS、EFS和OS)的替代终点。一项研究(CTNeoBC)对11个术前随机试验(n = 11,955)进行了汇总分析,与仅从乳腺中根除浸润性肿瘤(ypT0/is)相比,pCR提供了更好的预后相关信息,pCR定义为乳腺和腋窝淋巴结中无残留浸润性癌,有或无原位癌(ypT0/is ypN0或ypT0 ypN0)。

    pCR在本研究中不能作为改良EFS和OS的替代终点。

    [证据等级: 3iiiD]由于pCR与乳腺癌更具侵袭性亚型的个体患者的显著改善的结果有很强的相关性,因此 FDA 支持将pCR作为高危早期乳腺癌患者术前临床试验的终点。

    对于术前治疗后腋窝淋巴结组织学阴性的患者,无论术前治疗前的淋巴结状态如何,术后放射治疗也可以省略,从而可以根据患者的具体情况进行治疗。

    这种方法的潜在缺点是术前化疗后无法确定准确的病理分期。但是,残留的肿瘤组织可以提供更个体化的预后信息。

    患者选择、分期、治疗和随访

    由经验丰富的团队对接受术前治疗的患者进行多学科管理对于优化以下方面至关重要:

  • 病人选择。
  • 全身治疗的选择。
  • 腋窝的管理和手术方法。
  • 实施辅助放射治疗的决定。
  • 在开始术前治疗之前,应仔细评估肿瘤的组织学,分级和受体状态。 肿瘤具有纯小叶组织学,低级或高激素受体表达且HER2阴性状态的患者对化学疗法的反应较小,应考虑进行初次手术,尤其是当淋巴结临床阴性时。 即使在这些情况下在手术后进行辅助化疗,也可以避免采用第三代治疗方案(基于蒽环紫杉烷)。

    在开始术前治疗之前,应评估乳房和区域淋巴结内的疾病程度。系统性疾病的分期可能包括以下内容:

  • 胸部和腹部的CT扫描和骨骼扫描。
  • 正电子发射断层扫描(PET-CT)。
  • 当需要保乳治疗以确定肿瘤位置并排除多中心疾病时,进行基线乳腺成像。可疑异常通常在开始治疗前进行活检,并在乳腺肿瘤中心放置一个标记。在可能的情况下,在开始全身治疗之前,可以对可疑的腋窝淋巴结进行活检。

    在接受术前治疗的患者中,前哨淋巴结(SLN)活检的最佳时机尚未确定。应考虑以下几点:

  • 如果在基线检查时可疑淋巴结为恶性,可在新辅助治疗后进行SLN活组织检查,但假阴性率高。如果手术同时使用放射性示踪剂和蓝染示踪剂,且至少有两个淋巴结被取样(假阴性率为10.8%)且为阴性,则腋窝淋巴结清扫(ALND)可以省略。
  • [证据等级:2Div];
  • [证据等级:3iiD];
  • [证据级别:3iiDiv]或者,基于未检测到阳性淋巴结的可能性,在这种情况下执行ALND是可以接受的。
  • 在临床淋巴结阴性的患者中,由于术前治疗后观察到的假阴性率,SLN活检可在术前治疗前进行。
  • 如果SLN活组织检查是阴性的,可以省略ALND。
  • 如果新辅助化疗后进行SLN活检,在决定是否需要ALND时,应考虑化疗前的临床基线资料和化疗后淋巴结的病理状态。ALND通常在淋巴结阳性的情况下进行。
  • 在考虑术前治疗时,治疗方案包括以下内容:

  • 对于HER2阴性的乳腺肿瘤,基于蒽环类-紫杉烷的化疗方案。
  • 对于HER2阳性疾病,化疗和HER2靶向治疗。
  • 理想情况下,整个治疗方案在手术前实施。
  • 对于激素受体阳性乳腺癌的绝经后妇女,化疗是一种选择。对于不能接受化疗的患者,术前内分泌治疗可能是一种选择。
  • 对于激素受体阳性的绝经前乳腺癌患者,正在研究术前内分泌治疗的可行性。
  • 开始术前治疗后,必须定期对治疗反应进行临床评估。 如果保留乳房是外科手术的目标,则还需要重复影像评估。 在可行的情况下,术前治疗过程中疾病进展的患者可以过渡到非交叉耐药性方案或进行手术。

    尽管改用非交叉耐药方案比继续进行相同的疗法可提高pCR率,但尚无明确证据表明采用这种方法可改善其他乳腺癌的预后。

    HER2/neu-阴性乳腺癌

    早期试验检验了在辅助治疗中使用蒽环类药物的方案是否会延长术前用药的DFS和OS。证据支持术前使用蒽环类化疗方案比术后使用更高的保乳率,但是术前方案并没有改善生存率。

    证据(术前蒽环类药物方案):

  • 设计了一项随机临床试验(NSABP-B-18),以确定术前四个周期的AC联合化疗是否比辅助化疗更有效地延长DFS和OS。
  • [证据等级:1iiA]
  • 术前治疗后,36%的患者临床完全缓解。
  • 与术后化疗组相比,更多接受术前化疗的患者能够进行保乳手术(68%对60%;P=.001)。
  • 然而,与接受术后化疗的患者相比,接受术前化疗的患者的DFS、远处转移DFS或OS无统计学显著差异。
  • EORTC随机试验(EORTC-10902)同样显示DFS或OS没有改善,但显示术前FEC化疗后保乳手术的比例增加。
  • [证据等级:1iiA]
  • 为了改善仅用AC观察到的结果,在化疗方案中加入了紫杉烷。以下研究结果支持在基于蒽环类药物的化疗方案中加入紫杉烷治疗HER2阴性乳腺肿瘤。

    证据(基于蒽环类-紫杉烷的化疗方案):

  • 为了改善仅用AC观察到的结果,进行了NSABP (NSABP B-27 [NCT00002707])试验。
  • [证据等级:1iiD]
  • 与单独使用AC相比,术前使用AC加多西他赛具有更高的临床完全缓解率(AC分别为63.6%,多西他赛和单独AC为40.1%; P <.001); 还观察到更高的pCR率(AC后加多西他赛为26.1%,单独AC为13.7%; P <.001)。
  • 来自NSABP B-27和阿伯丁乳房组试验的数据支持在对蒽环类药物有初始反应或相对耐药的妇女中使用蒽环类-紫杉烷方案。
  • 还评估了蒽环类-紫杉烷替代方案(同时进行TAC),其疗效与上述序贯疗法相似。
  • [证据等级: 1iiDiv]
  • 三期吉帕西普托(NCT01583426)试验研究了未治疗原发性乳腺癌患者中的一种替代紫杉烷(nab-紫杉醇)。
  • 患者(n = 1,229)被随机分配接受12周的nab-紫杉醇或紫杉醇治疗,然后接受表柔比星和环磷酰胺(EC)四个疗程。 与紫杉醇组(174例患者,29%; 95%CI,25%–33%)相比,nab-紫杉醇组(233例患者,38%; 95%CI,35%–42%)的pCR率更高 。
  • [证据等级:1iiDiv]
  • 在蒽环类-紫杉烷类治疗方案中加入更多的细胞毒性药物,并未提高乳腺癌患者的保乳成功率或pCR率。
  • [证据等级:1iiDiv]
  • 然而,在三阴性乳腺癌(TNBC)患者中,联合使用卡铂的蒽环类-紫杉类化疗方案的化疗效果更好。 在将进行手术治疗前加用卡铂视为新的治疗标准之前,有必要进行生存终点的评估和确认生物标志物的反应或耐药性稳定性的研究。

    证据(在TNBC患者蒽环类-紫杉烷类化疗方案中加入卡铂):

  • 在GeparSixto (NCT01426880)试验中,卡铂被添加到蒽环类-紫杉烷类方案中。
  • [证据等级: 1iiDiv]
  • 在TNBC患者中,与单独蒽环类紫杉烷相比,在蒽环类紫杉烷类方案中添加卡铂后,观察到较高的pCR率(36.9%对53.2%; P = .005)。
  • 强度更高的方案还与毒性增加和治疗中止有关(39%比48%)。
  • CALGB 40603 (NCT00861705)试验将蒽环类-紫杉烷方案单独与蒽环类-紫杉烷方案加卡铂治疗二期和三期TNBC患者进行了比较。
  • [证据等级: 1iiDiv]
  • 蒽环类-紫杉烷方案加卡铂组乳腺和腋窝的pCR率为54%,而蒽环类-紫杉烷方案单独组为41%(P=.0029)
  • 重要的是,在辅助治疗和转移治疗中的研究结果并未证明在化疗中加入贝伐单抗比单独化疗有OS益处。然而,术前化疗中加入贝伐单抗与pCR率增加以及毒性增加有关,如高血压、心脏毒性、手足综合征和粘膜炎(如NSABP B-40 [NCT00408408和GeparQuinto [NCT00567554])。

    [证据等级: 1iiDiv]然而,尚不清楚观察到的适度益处是否会转化为长期生存优势。

    HER2/neu阳性乳腺癌

    辅助治疗成功后,第二阶段研究的初步报告显示,当曲妥珠单抗(一种结合HER2胞外区的单克隆抗体)加入术前蒽环类-紫杉类方案时,pCR率有所提高。

    [证据等级:1iiDiv]这已经在第三阶段研究中得到证实。

    曲妥珠单抗

    证据(曲妥珠单抗):

  • 一项Ⅲ期新辅助化疗联合赫赛汀(NOAH)的研究,以HER2阳性局部晚期或炎性乳腺癌患者为研究对象,在患者接受术前化疗时,随机分为接受曲妥珠单抗治疗1年组,和不接受曲妥珠单抗治疗组。
  • [证据等级:1iiA]
  • 研究结果证实,术前化疗中加入曲妥珠单抗不仅可以改善临床反应(87%比74%)和病理反应(乳腺和腋下38%比19%),而且还可以改善EFS和主要结果。
  • [证据等级:1iiA]
  • 经过5.4年的中位随访,在化疗组中EFS获益为43%(95%CI,34-52),曲妥珠单抗联合化疗的化疗患者,EFS获益为58%(95% CI, 48–66) 。 两个HER2阳性随机治疗组之间的EFS未经调整的HR为0.64(95%CI,0.44-0.93;双侧对数秩P = .016)。 在接受曲妥珠单抗的患者中,EFS与pCR密切相关。
  • 两名患者同时接受阿霉素和曲妥珠单抗治疗两个周期后出现症状性心力衰竭。对LVEF进行严密的心脏监测,阿霉素的总剂量不超过180毫克/平方米,这是LVEF出现相对较低数量下降和仅有两起心脏事件的原因。(有关更多信息,请参阅本总结中的辅助曲妥珠单抗的心脏毒性效应部分。)
  • [证据等级:1iiD]
  • 一项三期试验(Z1041 [NCT00513292]),以可手术HER2阳性乳腺癌患者为研究对象,在接受蒽环类药物(5-FU、表柔比星、环磷酰胺)的术前新辅助化疗时,随机分为序贯曲妥珠单抗组和同时使用曲妥珠单抗组。
  • [证据等级: 1iiDiv]
  • 两组之间乳房的pCR率无显着差异(序贯56.5%,同时54.2%;差异2.3%,CI 95%,-9.3-13.9)。
  • 此外,术前化疗期间LVEF的无症状下降在各组患者中的比例相似。
  • 基于这些发现,结论是曲妥珠单抗与蒽环类药物同时给药是不合理的。
  • 曲妥珠单抗的皮下制剂也已获得批准。

    安全性试验(NCT01566721)评估了在HER2阳性乳腺癌的一期至三期中,自我给药与临床医生给药SQ曲妥珠单抗的安全性和耐受性。

    化疗同时或依次进行。

    一项三期试验(HannaH [NCT 00950300])也证明了术前SQ曲妥珠单抗的药代动力学和疗效不低于静脉注射制剂。这项国际开放性试验(n=596)随机分配患有可手术、局部晚期或炎性HER2阳性乳腺癌的女性接受术前化疗(蒽环类-紫杉类为基础),术前每3周给予SQ或静脉注射曲妥珠单抗。患者接受辅助曲妥珠单抗以完成1年的治疗。

    [证据等级:1iiD]各组间的pCR比率相差4.7%(95% CI,4.0-13.4);静脉给药组为40.7%,而SQ给药组为45.4%,表明SQ制剂的非劣效性。EFS和OS是次要终点。六年EFS在两个方面都是65%(HR,0.98;95% CI,0.74-1.29)。两组6年OS的比率为84%(HR,0.94;95% CI,0.61-1.45)。

    新的HER2靶向疗法(lapatinib,pertuzumab)也进行了研究。看来HER2受体的双靶治疗使pCR率增高;然而,迄今为止,这种方法还没有显示出生存优势。

    帕妥珠单抗

    帕妥珠单抗是一种人源化单克隆抗体,可与HER2受体胞外域上的独特表位结合并抑制二聚化。 在两项术前临床试验中已对帕妥珠单抗联合曲妥珠单抗联合或不联合化疗进行了评估,以提高曲妥珠单抗和化疗观察到的pCR率。

    证据(帕妥珠单抗):

  • 在开放性随机二期NeoSPHERE(NCT00545688)试验中,
  • 417名肿瘤大于2 cm或淋巴结阳性且HER2阳性乳腺癌女性被随机分配到四种术前方案中的一种:
  • [证据等级:1iiDiv]
  • 多西他赛加曲妥珠单抗。
  • 多西他赛加曲妥珠单抗和帕妥珠单抗
  • 帕妥珠单抗加曲妥珠单抗。
  • 多西他赛加帕妥珠单抗。
  • 观察到以下结果:

  • 多西他赛加曲妥珠单抗的pCR率为29%,多西他赛加曲妥珠单抗和帕妥珠单抗的pCR率为46%,帕妥珠单抗加曲妥珠单抗的pCR率为17%,多西他赛加帕妥珠单抗的PcR率为24%。因此,双重HER2阻断加化疗的术前治疗组pCR率最高。
  • 在多西他赛加曲妥珠单抗联合用药中加入帕妥珠单抗似乎没有增加毒性作用,包括心脏不良事件的风险。
  • 尽管双重HER2阻断加化疗观察到高pCR率,但PFS和DFS率并没有改善,尽管NeoSPHERE试验并不能检测长期疗效结果的差异。
  • 开放标签、随机、第二阶段TRYPHAENA试验(NCT00976989)旨在评估曲妥珠单抗和帕妥珠单抗的耐受性和活性。
  • [证据等级: 1iiDiv]所有225名肿瘤大于2cm或淋巴结阳性,且患有可手术、局部晚期或炎性HER2阳性乳腺癌的女性,被随机分配到三种术前方案中的一种:
  • FEC方案加曲妥珠单抗加帕妥珠单抗(×3),然后序贯使用多西他赛加曲妥珠单抗加帕妥珠单抗。
  • 单用FEC(×3),然后同时使用多西他赛加曲妥珠单抗加帕妥珠单抗(×3)。
  • 多西他赛和卡铂加曲妥珠单抗加帕妥珠单抗同时使用(×6)。
  • 观察到以下结果:

  • 所有三个治疗组的pCR率是相等的:(62%为FEC加曲妥珠单抗加帕妥珠单抗,其次是多西他赛加曲妥珠单抗加帕妥珠单抗;57%用于FEC,其次是多西他赛加曲妥珠单抗加帕妥珠单抗;同时给予多西他赛和卡铂加曲妥珠单抗加帕妥珠单抗的患者为66%)。
  • 所有三组均与5%或更低的心脏不良事件发生率相关。
  • 由于这些研究,FDA加快批准使用帕妥珠单抗作为肿瘤大于2 cm或淋巴结阳性的HER2阳性早期乳腺癌女性术前治疗的一部分。

    在证实性APHINDY(NCT 01358877)试验(一项针对HER2阳性乳腺癌女性的随机、三期辅助研究)的结果之后,对帕妥珠单抗的FDA批准随后转化为常规批准,该试验证明,与单独使用化疗和曲妥珠单抗相比,使用帕妥珠单抗加曲妥珠单抗的双HER2靶向治疗的组合,侵袭性DFS得到改善。

    作为完整治疗方案的一部分,现已批准将帕妥珠单抗与曲妥珠单抗和化疗联合用于局部晚期、炎性或早期HER2阳性乳腺癌(大于2厘米或淋巴结阳性)的新辅助治疗,并与曲妥珠单抗联合化疗用于HER2阳性且具有高复发风险的早期乳腺癌的辅助治疗。

    拉帕替尼

    拉帕替尼是一种小分子激酶抑制剂,能够抑制表皮生长因子受体和HER2的双重受体。研究结果不支持术前使用拉帕替尼。

    证据(反对使用拉帕替尼治疗HER2阳性的早期乳腺癌):

  • 在Geparquinto [NCT 00567554]试验中检查了拉帕替尼在术前治疗中的作用。
  • 该三期试验将HER2阳性的早期乳腺癌患者随机分配接受曲妥珠单抗化疗或拉帕替尼化疗,以pCR为主要终点。
  • [证据等级:1iiDiv]
  • 化疗和拉帕替尼组的pCR明显低于化疗和曲妥珠单抗组(22.7%vs. 30.3%; P = .04)。
  • DFS、RFS和OS的其他终点尚未报告。
  • CALGB 40601 (NCT00770809)是一项三期临床试验,该试验随机分配患有II期和II期HER2阳性乳腺癌的患者接受紫杉醇加曲妥珠单抗或紫杉醇加曲妥珠单抗加拉帕替尼治疗。这项研究的主要终点是乳房pCR。
  • [证据等级:1iiDiv]
  • 接受紫杉醇加曲妥珠单抗治疗的患者的pCR率为46%(95% CI,37%–55%),接受紫杉醇加曲妥珠单抗加拉帕替尼治疗的患者的pCR率为56%(95% CI,47%–65%;P=.13),表明添加拉帕替尼没有获益。
  • NeoALTTO [NCT00553358]三期试验随机分配455名HER2阳性早期乳腺癌(肿瘤大小>2cm)患者接受术前拉帕替尼、术前曲妥珠单抗或术前拉帕替尼加曲妥珠单抗治疗。这种抗HER2治疗单独进行6周,然后每周向方案中加入紫杉醇,再持续12周。这项研究的主要终点是pCR。
  • pCR在拉帕替尼加曲妥珠单抗联合组显著升高(51.3%;95% CI,43.1–59.5)比单用曲妥珠单抗组(29.5%;95% CI,22.4–37.5)。
  • 在拉帕替尼组(24.7%,95% CI,18.1-32.3)和曲妥珠单抗组之间pCR未见显著差异(差异-4.8%,-17.6-8.2;P=.34)。
  • 对预先指定的EFS和OS次要终点的最新分析表明,各组之间没有差异。
  • ALLTO (NCT00490139)三期临床试验提供了更明确的疗效数据,该试验将女性患者随机分配到曲妥珠单抗组或曲妥珠单抗加拉帕替尼组进行辅助治疗。

    该试验没有达到它的主要终点DFS。在NeoALTTO试验中,在曲妥珠单抗中加入拉帕替尼后,pCR率增加了一倍,但在中位随访4.5年的ALTTO试验中,这并未转化为生存结果的改善。这表明目前拉帕替尼在术前或辅助治疗中没有作用。

    帕妥珠单抗和拉帕替尼的心脏毒性作用

    使用Roche和Genentech提供的数据,对598名接受帕妥珠单抗治疗的癌症患者的心脏安全性进行了汇总分析。

    [证据等级:3iiiD]

  • 单独使用帕妥珠单抗的患者中6.9%观察到无症状的左心室收缩功能障碍(n=331;95% CI,4.5-10.2),3.4%的患者接受帕妥珠单抗联合非蒽环类化疗(n=175;95% CI为1.3-7.3),6.5%的患者接受帕妥珠单抗联合曲妥珠单抗治疗(n=93;95% CI,2.4–13.5)。
  • 分别有1例(0.3%)、2例(1.1%)和1例(1.1%)患者出现症状性心力衰竭。
  • 对随机试验(n=6)进行荟萃分析,评价抗HER2单一疗法(曲妥珠单抗或拉帕替尼或帕妥珠单抗)与双重抗HER2疗法(曲妥珠单抗加拉帕替尼或曲妥珠单抗加帕妥珠单抗)的疗效。

    [证据等级:3iiiD]

  • 在接受单一治疗的患者中观察到LVEF下降3.1%(95% CI,2.2%-4.4%),在接受双重治疗的患者中观察到下降2.9%(95% CI,2.1%-4.1%)。
  • 在接受单一治疗的患者中,观察到0.88%出现症状性心力衰竭(95% CI,0.47%–1.64%),在接受双靶治疗的患者中,观察到1.49%出现症状性心力衰竭(95% CI,0.98%–2.23%)。
  • 术前内分泌治疗

    对于激素受体阳性的绝经后女性乳腺癌患者,当因基础疾病或身体状态不是适合化疗时,术前内分泌治疗可能是一种选择。尽管术前激素治疗3至6个月的毒性特征是良好的,但获得的pCR率(1%–8%)远低于未选择人群的化疗报道。

    [证据等级:1iDiv]

    在这个病人群体中,可能需要更长的术前治疗时间。术前他莫昔芬的总有效率为33%,一些患者在治疗后12个月出现最大反应。

    一项对不适于化疗的老年患者术前使用来曲唑4、8或12个月的随机研究表明,治疗持续时间越长,pCR率越高(17.5%对5%对2.5%,趋势的P值<.04)。

    [证据等级:1iiDiv]

    AIs也与他莫昔芬在术前治疗方面进行了比较。经过3至4个月的术前治疗后,AI组患者的总体客观缓解和保乳率均有统计学意义上的显著提高

    或者与他莫昔芬相关的结果相当。

    美国外科医师学会肿瘤组的一项试验目前正在比较术前使用阿那曲唑、来曲唑或依西美坦的疗效。

    绝经前的激素反应性乳腺癌患者,术前应用内分泌治疗仍在研究中。

    术后治疗

    卡培他滨

    一项临床试验表明,对于术前化疗后未获得pCR的患者,使用卡培他滨作为辅助治疗是获益的。

    证据(卡培他滨):

  • 在日本和韩国进行的一项研究中,910名HER2/neu阴性乳腺癌患者在术前使用蒽环类、紫杉类或两者联合化疗后仍有残留肿瘤,以非盲的方式被随机分配接受6至8个4周为一周期的卡培他滨化疗或不接受进一步化疗。
  • 由于计划的中期分析的结果,研究被终止,并完成了最终分析。
  • 在最终的分析中,包括887名符合条件的患者,主要终点DFS的延长具有显著统计学意义(HR,0.70;95% CI,0.53-0.92;P=.01;5年期DFS,74.1%对67.6%。
  • 在卡培他滨组中,作为次要终点的OS也更长(HR,0.59;95% CI,0.39–0.90;P=.01;5年 OS,89.2%对83.6%。
  • 在卡培他滨组,73.4%的患者出现不同程度的手足综合征。
  • 曲妥珠单抗emtansine (T-DM1)

    证据(T-DM1):

  • 在一项三期试验(KATHERINE[NCT01772472])中,1,486名HER2阳性女性乳腺癌患者接受了术前含紫杉的化疗(含或不含蒽环类药物)以及曲妥珠单抗(含或不含第二种HER2靶向药物),但在手术后仍有肿瘤残留,这些患者被随机分配接受14个周期的辅助曲妥珠单抗或T-DM1治疗。
  • [证据等级:1iDii]
  • 在计划进行中期分析时,T-DM1组的浸润性DFS(主要研究终点)显著高于曲妥珠单抗组(HRinvasive疾病或死亡,0.50;95% CI,0.39-0.64;P<.001;3年时的侵袭性DFS,88.3%对77%)。
  • OS数据不成熟且不显著(HR,0.70;95% CI,0.47-1.06)。
  • 接受T-DM1治疗的患者更有可能因为不良事件而停止治疗(18%对2.1%),并且感觉神经病变的发生率更高(18.6%对6.9%),其中大多数病例在分析时已经缓解。
  • 在亚组分析中,在所有亚组中都观察到了T-DM1的获益,包括在术前接受双靶治疗的受试者。
  • 对于术前治疗后仍有残余病变的患者,应考虑采用这些方法并参与新疗法的临床试验。EA1131(NCT02445391)是一项随机的三期临床试验,该试验将术前治疗后残留基底样TNBC的患者随机分配接受铂类化疗或卡培他滨化疗。S1418/BR006(NCT02954874)是一项三期试验,旨在评估术前治疗后残留TNBC (≥1cm浸润性癌或残留结节)患者使用pembrolizumab作为辅助治疗的疗效。

    大多数接受术前治疗的女性在保乳术后后进行放射治疗,以降低局部复发的风险。在决定是否实施术后放疗时,应考虑最初临床分期和随后的病理分期。

    其他辅助全身治疗可以在术后、辅助放疗期间或完成后进行,包括对激素受体阳性乳腺癌患者的辅助激素治疗和对HER2阳性乳腺癌患者的辅助曲妥珠单抗治疗。(有关更多信息,请参考本摘要早期/局部/可手术乳腺癌部分的激素受体阳性乳腺癌小节。)

    治疗后监测

    在完成一期、二期或三期乳腺癌的一期治疗后,随访的频率和筛查检测是否合适仍存在争议。

    来自随机试验的证据表明,与常规体检相比,定期随访骨扫描、肝脏超声检查、胸部x线检查和肝功能血液检查并不能提高生存率或生活质量。

    即使这些检查能够早期发现疾病复发,患者的生存率也不会因此受到影响。

    基于这些数据,对于I - III期完成治疗的无症状乳腺癌患者,可接受的随访可以限于以下范围:

  • 体格检查
  • 每年一次乳房x光检查。
  • 当前临床试验

    使用我们的高级临床试验搜索来查找NCI支持的癌症临床试验,这些试验现在正在招募患者。可以通过试验地点、治疗类型、药物名称和其他标准来缩小搜索范围。关于临床试验的一般信息也是可用的。

    参考文献

  • Fisher B, Fisher ER, Redmond C, et al.: Tumor nuclear grade, estrogen receptor, and progesterone receptor: their value alone or in combination as indicators of outcome following adjuvant therapy for breast cancer. Breast Cancer Res Treat 7 (3): 147-60, 1986.
  • Thor AD, Berry DA, Budman DR, et al.: erbB-2, p53, and efficacy of adjuvant therapy in lymph node-positive breast cancer. J Natl Cancer Inst 90 (18): 1346-60, 1998.
  • Paik S, Bryant J, Park C, et al.: erbB-2 and response to doxorubicin in patients with axillary lymph node-positive, hormone receptor-negative breast cancer. J Natl Cancer Inst 90 (18): 1361-70, 1998.
  • Simpson JF, Gray R, Dressler LG, et al.: Prognostic value of histologic grade and proliferative activity in axillary node-positive breast cancer: results from the Eastern Cooperative Oncology Group Companion Study, EST 4189. J Clin Oncol 18 (10): 2059-69, 2000.
  • Hutchins LF, Green SJ, Ravdin PM, et al.: Randomized, controlled trial of cyclophosphamide, methotrexate, and fluorouracil versus cyclophosphamide, doxorubicin, and fluorouracil with and without tamoxifen for high-risk, node-negative breast cancer: treatment results of Intergroup Protocol INT-0102. J Clin Oncol 23 (33): 8313-21, 2005.
  • Abrams JS, Phillips PH, Friedman MA: Meeting highlights: a reappraisal of research results for the local treatment of early stage breast cancer. J Natl Cancer Inst 87 (24): 1837-45, 1995.
  • Weiss MC, Fowble BL, Solin LJ, et al.: Outcome of conservative therapy for invasive breast cancer by histologic subtype. Int J Radiat Oncol Biol Phys 23 (5): 941-7, 1992.
  • van Dongen JA, Voogd AC, Fentiman IS, et al.: Long-term results of a randomized trial comparing breast-conserving therapy with mastectomy: European Organization for Research and Treatment of Cancer 10801 trial. J Natl Cancer Inst 92 (14): 1143-50, 2000.
  • Fisher B, Anderson S, Bryant J, et al.: Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347 (16): 1233-41, 2002.
  • Blichert-Toft M, Rose C, Andersen JA, et al.: Danish randomized trial comparing breast conservation therapy with mastectomy: six years of life-table analysis. Danish Breast Cancer Cooperative Group. J Natl Cancer Inst Monogr (11): 19-25, 1992.
  • van Dongen JA, Bartelink H, Fentiman IS, et al.: Randomized clinical trial to assess the value of breast-conserving therapy in stage I and II breast cancer, EORTC 10801 trial. J Natl Cancer Inst Monogr (11): 15-8, 1992.
  • Sarrazin D, Lê MG, Arriagada R, et al.: Ten-year results of a randomized trial comparing a conservative treatment to mastectomy in early breast cancer. Radiother Oncol 14 (3): 177-84, 1989.
  • Jacobson JA, Danforth DN, Cowan KH, et al.: Ten-year results of a comparison of conservation with mastectomy in the treatment of stage I and II breast cancer. N Engl J Med 332 (14): 907-11, 1995.
  • Veronesi U, Cascinelli N, Mariani L, et al.: Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med 347 (16): 1227-32, 2002.
  • Veronesi U, Salvadori B, Luini A, et al.: Breast conservation is a safe method in patients with small cancer of the breast. Long-term results of three randomised trials on 1,973 patients. Eur J Cancer 31A (10): 1574-9, 1995.
  • Freedman GM, Anderson PR, Li T, et al.: Locoregional recurrence of triple-negative breast cancer after breast-conserving surgery and radiation. Cancer 115 (5): 946-51, 2009.
  • Schmidt-Ullrich R, Wazer DE, Tercilla O, et al.: Tumor margin assessment as a guide to optimal conservation surgery and irradiation in early stage breast carcinoma. Int J Radiat Oncol Biol Phys 17 (4): 733-8, 1989.
  • Solin LJ, Fowble BL, Schultz DJ, et al.: The significance of the pathology margins of the tumor excision on the outcome of patients treated with definitive irradiation for early stage breast cancer. Int J Radiat Oncol Biol Phys 21 (2): 279-87, 1991.
  • Wazer DE, Schmidt-Ullrich RK, Schmid CH, et al.: The value of breast lumpectomy margin assessment as a predictor of residual tumor burden. Int J Radiat Oncol Biol Phys 38 (2): 291-9, 1997.
  • Moran MS, Schnitt SJ, Giuliano AE, et al.: Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. J Clin Oncol 32 (14): 1507-15, 2014.
  • Chagpar AB, Killelea BK, Tsangaris TN, et al.: A Randomized, Controlled Trial of Cavity Shave Margins in Breast Cancer. N Engl J Med 373 (6): 503-10, 2015.
  • Barth RJ, Danforth DN, Venzon DJ, et al.: Level of axillary involvement by lymph node metastases from breast cancer is not an independent predictor of survival. Arch Surg 126 (5): 574-7, 1991.
  • Rivadeneira DE, Simmons RM, Christos PJ, et al.: Predictive factors associated with axillary lymph node metastases in T1a and T1b breast carcinomas: analysis in more than 900 patients. J Am Coll Surg 191 (1): 1-6; discussion 6-8, 2000.
  • Greco M, Agresti R, Cascinelli N, et al.: Breast cancer patients treated without axillary surgery: clinical implications and biologic analysis. Ann Surg 232 (1): 1-7, 2000.
  • Kern KA: Sentinel lymph node mapping in breast cancer using subareolar injection of blue dye. J Am Coll Surg 189 (6): 539-45, 1999.
  • Rubio IT, Korourian S, Cowan C, et al.: Sentinel lymph node biopsy for staging breast cancer. Am J Surg 176 (6): 532-7, 1998.
  • Veronesi U, Paganelli G, Galimberti V, et al.: Sentinel-node biopsy to avoid axillary dissection in breast cancer with clinically negative lymph-nodes. Lancet 349 (9069): 1864-7, 1997.
  • Albertini JJ, Lyman GH, Cox C, et al.: Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. JAMA 276 (22): 1818-22, 1996.
  • Krag D, Weaver D, Ashikaga T, et al.: The sentinel node in breast cancer--a multicenter validation study. N Engl J Med 339 (14): 941-6, 1998.
  • Veronesi U, Paganelli G, Viale G, et al.: Sentinel lymph node biopsy and axillary dissection in breast cancer: results in a large series. J Natl Cancer Inst 91 (4): 368-73, 1999.
  • Mansel RE, Fallowfield L, Kissin M, et al.: Randomized multicenter trial of sentinel node biopsy versus standard axillary treatment in operable breast cancer: the ALMANAC Trial. J Natl Cancer Inst 98 (9): 599-609, 2006.
  • Krag DN, Anderson SJ, Julian TB, et al.: Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol 11 (10): 927-33, 2010.
  • Giuliano AE, Hunt KK, Ballman KV, et al.: Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA 305 (6): 569-75, 2011.
  • Galimberti V, Cole BF, Zurrida S, et al.: Axillary dissection versus no axillary dissection in patients with sentinel-node micrometastases (IBCSG 23-01): a phase 3 randomised controlled trial. Lancet Oncol 14 (4): 297-305, 2013.
  • Donker M, van Tienhoven G, Straver ME, et al.: Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): a randomised, multicentre, open-label, phase 3 non-inferiority trial. Lancet Oncol 15 (12): 1303-10, 2014.
  • Cunningham BL: Breast reconstruction following mastectomy. In: Najarian JS, Delaney JP, eds.: Advances in Breast and Endocrine Surgery. Chicago, Ill: Year Book Medical Publishers, 1986, pp 213-226.
  • Scanlon EF: The role of reconstruction in breast cancer. Cancer 68 (5 Suppl): 1144-7, 1991.
  • Hang-Fu L, Snyderman RK: State-of-the-art breast reconstruction. Cancer 68 (5 Suppl): 1148-56, 1991.
  • Feller WF, Holt R, Spear S, et al.: Modified radical mastectomy with immediate breast reconstruction. Am Surg 52 (3): 129-33, 1986.
  • Kuske RR, Schuster R, Klein E, et al.: Radiotherapy and breast reconstruction: clinical results and dosimetry. Int J Radiat Oncol Biol Phys 21 (2): 339-46, 1991.
  • Clarke M, Collins R, Darby S, et al.: Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366 (9503): 2087-106, 2005.
  • Eifel P, Axelson JA, Costa J, et al.: National Institutes of Health Consensus Development Conference Statement: adjuvant therapy for breast cancer, November 1-3, 2000. J Natl Cancer Inst 93 (13): 979-89, 2001.
  • Darby S, McGale P, Correa C, et al.: Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 378 (9804): 1707-16, 2011.
  • Romestaing P, Lehingue Y, Carrie C, et al.: Role of a 10-Gy boost in the conservative treatment of early breast cancer: results of a randomized clinical trial in Lyon, France. J Clin Oncol 15 (3): 963-8, 1997.
  • Bartelink H, Horiot JC, Poortmans P, et al.: Recurrence rates after treatment of breast cancer with standard radiotherapy with or without additional radiation. N Engl J Med 345 (19): 1378-87, 2001.
  • Bartelink H, Maingon P, Poortmans P, et al.: Whole-breast irradiation with or without a boost for patients treated with breast-conserving surgery for early breast cancer: 20-year follow-up of a randomised phase 3 trial. Lancet Oncol 16 (1): 47-56, 2015.
  • Wazer DE, Kramer B, Schmid C, et al.: Factors determining outcome in patients treated with interstitial implantation as a radiation boost for breast conservation therapy. Int J Radiat Oncol Biol Phys 39 (2): 381-93, 1997.
  • Whelan TJ, Pignol JP, Levine MN, et al.: Long-term results of hypofractionated radiation therapy for breast cancer. N Engl J Med 362 (6): 513-20, 2010.
  • Haviland JS, Owen JR, Dewar JA, et al.: The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol 14 (11): 1086-94, 2013.
  • Hickey BE, James ML, Lehman M, et al.: Fraction size in radiation therapy for breast conservation in early breast cancer. Cochrane Database Syst Rev 7: CD003860, 2016.
  • Whelan TJ, Olivotto IA, Parulekar WR, et al.: Regional Nodal Irradiation in Early-Stage Breast Cancer. N Engl J Med 373 (4): 307-16, 2015.
  • Poortmans PM, Collette S, Kirkove C, et al.: Internal Mammary and Medial Supraclavicular Irradiation in Breast Cancer. N Engl J Med 373 (4): 317-27, 2015.
  • Budach W, Bölke E, Kammers K, et al.: Adjuvant radiation therapy of regional lymph nodes in breast cancer - a meta-analysis of randomized trials- an update. Radiat Oncol 10: 258, 2015.
  • Ragaz J, Jackson SM, Le N, et al.: Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer. N Engl J Med 337 (14): 956-62, 1997.
  • Overgaard M, Hansen PS, Overgaard J, et al.: Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. Danish Breast Cancer Cooperative Group 82b Trial. N Engl J Med 337 (14): 949-55, 1997.
  • Fowble B, Gray R, Gilchrist K, et al.: Identification of a subgroup of patients with breast cancer and histologically positive axillary nodes receiving adjuvant chemotherapy who may benefit from postoperative radiotherapy. J Clin Oncol 6 (7): 1107-17, 1988.
  • Favourable and unfavourable effects on long-term survival of radiotherapy for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists' Collaborative Group. Lancet 355 (9217): 1757-70, 2000.
  • McGale P, Taylor C, Correa C, et al.: Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 383 (9935): 2127-35, 2014.
  • Taghian AG, Jeong JH, Mamounas EP, et al.: Low locoregional recurrence rate among node-negative breast cancer patients with tumors 5 cm or larger treated by mastectomy, with or without adjuvant systemic therapy and without radiotherapy: results from five national surgical adjuvant breast and bowel project randomized clinical trials. J Clin Oncol 24 (24): 3927-32, 2006.
  • Recht A, Come SE, Henderson IC, et al.: The sequencing of chemotherapy and radiation therapy after conservative surgery for early-stage breast cancer. N Engl J Med 334 (21): 1356-61, 1996.
  • Fisher B, Brown AM, Dimitrov NV, et al.: Two months of doxorubicin-cyclophosphamide with and without interval reinduction therapy compared with 6 months of cyclophosphamide, methotrexate, and fluorouracil in positive-node breast cancer patients with tamoxifen-nonresponsive tumors: results from the National Surgical Adjuvant Breast and Bowel Project B-15. J Clin Oncol 8 (9): 1483-96, 1990.
  • Wallgren A, Bernier J, Gelber RD, et al.: Timing of radiotherapy and chemotherapy following breast-conserving surgery for patients with node-positive breast cancer. International Breast Cancer Study Group. Int J Radiat Oncol Biol Phys 35 (4): 649-59, 1996.
  • Hickey BE, Francis DP, Lehman M: Sequencing of chemotherapy and radiotherapy for early breast cancer. Cochrane Database Syst Rev 4: CD005212, 2013.
  • Halyard MY, Pisansky TM, Dueck AC, et al.: Radiotherapy and adjuvant trastuzumab in operable breast cancer: tolerability and adverse event data from the NCCTG Phase III Trial N9831. J Clin Oncol 27 (16): 2638-44, 2009.
  • Lingos TI, Recht A, Vicini F, et al.: Radiation pneumonitis in breast cancer patients treated with conservative surgery and radiation therapy. Int J Radiat Oncol Biol Phys 21 (2): 355-60, 1991.
  • Paszat LF, Mackillop WJ, Groome PA, et al.: Mortality from myocardial infarction after adjuvant radiotherapy for breast cancer in the surveillance, epidemiology, and end-results cancer registries. J Clin Oncol 16 (8): 2625-31, 1998.
  • Rutqvist LE, Johansson H: Mortality by laterality of the primary tumour among 55,000 breast cancer patients from the Swedish Cancer Registry. Br J Cancer 61 (6): 866-8, 1990.
  • Darby SC, McGale P, Taylor CW, et al.: Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol 6 (8): 557-65, 2005.
  • Højris I, Overgaard M, Christensen JJ, et al.: Morbidity and mortality of ischaemic heart disease in high-risk breast-cancer patients after adjuvant postmastectomy systemic treatment with or without radiotherapy: analysis of DBCG 82b and 82c randomised trials. Radiotherapy Committee of the Danish Breast Cancer Cooperative Group. Lancet 354 (9188): 1425-30, 1999.
  • Nixon AJ, Manola J, Gelman R, et al.: No long-term increase in cardiac-related mortality after breast-conserving surgery and radiation therapy using modern techniques. J Clin Oncol 16 (4): 1374-9, 1998.
  • Giordano SH, Kuo YF, Freeman JL, et al.: Risk of cardiac death after adjuvant radiotherapy for breast cancer. J Natl Cancer Inst 97 (6): 419-24, 2005.
  • Harris EE, Correa C, Hwang WT, et al.: Late cardiac mortality and morbidity in early-stage breast cancer patients after breast-conservation treatment. J Clin Oncol 24 (25): 4100-6, 2006.
  • Meek AG: Breast radiotherapy and lymphedema. Cancer 83 (12 Suppl American): 2788-97, 1998.
  • Larson D, Weinstein M, Goldberg I, et al.: Edema of the arm as a function of the extent of axillary surgery in patients with stage I-II carcinoma of the breast treated with primary radiotherapy. Int J Radiat Oncol Biol Phys 12 (9): 1575-82, 1986.
  • Swedborg I, Wallgren A: The effect of pre- and postmastectomy radiotherapy on the degree of edema, shoulder-joint mobility, and gripping force. Cancer 47 (5): 877-81, 1981.
  • Powell S, Cooke J, Parsons C: Radiation-induced brachial plexus injury: follow-up of two different fractionation schedules. Radiother Oncol 18 (3): 213-20, 1990.
  • Boice JD, Harvey EB, Blettner M, et al.: Cancer in the contralateral breast after radiotherapy for breast cancer. N Engl J Med 326 (12): 781-5, 1992.
  • Storm HH, Andersson M, Boice JD, et al.: Adjuvant radiotherapy and risk of contralateral breast cancer. J Natl Cancer Inst 84 (16): 1245-50, 1992.
  • Fraass BA, Roberson PL, Lichter AS: Dose to the contralateral breast due to primary breast irradiation. Int J Radiat Oncol Biol Phys 11 (3): 485-97, 1985.
  • Taghian A, de Vathaire F, Terrier P, et al.: Long-term risk of sarcoma following radiation treatment for breast cancer. Int J Radiat Oncol Biol Phys 21 (2): 361-7, 1991.
  • Inskip PD, Stovall M, Flannery JT: Lung cancer risk and radiation dose among women treated for breast cancer. J Natl Cancer Inst 86 (13): 983-8, 1994.
  • Senkus E, Kyriakides S, Penault-Llorca F, et al.: Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 24 (Suppl 6): vi7-23, 2013.
  • Early Breast Cancer Trialists' Collaborative Group (EBCTCG): Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365 (9472): 1687-717, 2005.
  • Polychemotherapy for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists' Collaborative Group. Lancet 352 (9132): 930-42, 1998.
  • Pritchard KI, Shepherd LE, O'Malley FP, et al.: HER2 and responsiveness of breast cancer to adjuvant chemotherapy. N Engl J Med 354 (20): 2103-11, 2006.
  • Gennari A, Sormani MP, Pronzato P, et al.: HER2 status and efficacy of adjuvant anthracyclines in early breast cancer: a pooled analysis of randomized trials. J Natl Cancer Inst 100 (1): 14-20, 2008.
  • De Laurentiis M, Cancello G, D'Agostino D, et al.: Taxane-based combinations as adjuvant chemotherapy of early breast cancer: a meta-analysis of randomized trials. J Clin Oncol 26 (1): 44-53, 2008.
  • Henderson IC, Berry DA, Demetri GD, et al.: Improved outcomes from adding sequential Paclitaxel but not from escalating Doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol 21 (6): 976-83, 2003.
  • Mamounas EP, Bryant J, Lembersky B, et al.: Paclitaxel after doxorubicin plus cyclophosphamide as adjuvant chemotherapy for node-positive breast cancer: results from NSABP B-28. J Clin Oncol 23 (16): 3686-96, 2005.
  • Martin M, Pienkowski T, Mackey J, et al.: Adjuvant docetaxel for node-positive breast cancer. N Engl J Med 352 (22): 2302-13, 2005.
  • Perez EA: TAC--a new standard in adjuvant therapy for breast cancer? N Engl J Med 352 (22): 2346-8, 2005.
  • Sparano JA, Wang M, Martino S, et al.: Weekly paclitaxel in the adjuvant treatment of breast cancer. N Engl J Med 358 (16): 1663-71, 2008.
  • Citron ML, Berry DA, Cirrincione C, et al.: Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol 21 (8): 1431-9, 2003.
  • Hudis C, Citron M, Berry D, et al.: Five year follow-up of INT C9741: dose-dense (DD) chemotherapy (CRx) is safe and effective. [Abstract] Breast Cancer Research and Treatment 94 (Suppl 1): A-41, 2005.
  • Citron ML, Berry DA, Cirrincione C, et al.: Dose-dense (DD) AC followed by paclitaxel is associated with moderate, frequent anemia compared to sequential (S) and/or less DD treatment: update by CALGB on Breast Cancer Intergroup Trial C9741 with ECOG, SWOG, & NCCTG. [Abstract] J Clin Oncol 23 (Suppl 16): A-620, 33s, 2005.
  • Del Mastro L, De Placido S, Bruzzi P, et al.: Fluorouracil and dose-dense chemotherapy in adjuvant treatment of patients with early-stage breast cancer: an open-label, 2 × 2 factorial, randomised phase 3 trial. Lancet 385 (9980): 1863-72, 2015.
  • Petrelli F, Cabiddu M, Coinu A, et al.: Adjuvant dose-dense chemotherapy in breast cancer: a systematic review and meta-analysis of randomized trials. Breast Cancer Res Treat 151 (2): 251-9, 2015.
  • Early Breast Cancer Trialists' Collaborative Group (EBCTCG): Increasing the dose intensity of chemotherapy by more frequent administration or sequential scheduling: a patient-level meta-analysis of 37 298 women with early breast cancer in 26 randomised trials. Lancet 393 (10179): 1440-1452, 2019.
  • Blackwell K, Semiglazov V, Krasnozhon D, et al.: Comparison of EP2006, a filgrastim biosimilar, to the reference: a phase III, randomized, double-blind clinical study in the prevention of severe neutropenia in patients with breast cancer receiving myelosuppressive chemotherapy. Ann Oncol 26 (9): 1948-53, 2015.
  • Jones SE, Savin MA, Holmes FA, et al.: Phase III trial comparing doxorubicin plus cyclophosphamide with docetaxel plus cyclophosphamide as adjuvant therapy for operable breast cancer. J Clin Oncol 24 (34): 5381-7, 2006.
  • Jones S, Holmes FA, O'Shaughnessy J, et al.: Docetaxel With Cyclophosphamide Is Associated With an Overall Survival Benefit Compared With Doxorubicin and Cyclophosphamide: 7-Year Follow-Up of US Oncology Research Trial 9735. J Clin Oncol 27 (8): 1177-83, 2009.
  • Gagliato Dde M, Gonzalez-Angulo AM, Lei X, et al.: Clinical impact of delaying initiation of adjuvant chemotherapy in patients with breast cancer. J Clin Oncol 32 (8): 735-44, 2014.
  • Pritchard KI, Paterson AH, Paul NA, et al.: Increased thromboembolic complications with concurrent tamoxifen and chemotherapy in a randomized trial of adjuvant therapy for women with breast cancer. National Cancer Institute of Canada Clinical Trials Group Breast Cancer Site Group. J Clin Oncol 14 (10): 2731-7, 1996.
  • Shapiro CL, Manola J, Leboff M: Ovarian failure after adjuvant chemotherapy is associated with rapid bone loss in women with early-stage breast cancer. J Clin Oncol 19 (14): 3306-11, 2001.
  • Smith RE, Bryant J, DeCillis A, et al.: Acute myeloid leukemia and myelodysplastic syndrome after doxorubicin-cyclophosphamide adjuvant therapy for operable breast cancer: the National Surgical Adjuvant Breast and Bowel Project Experience. J Clin Oncol 21 (7): 1195-204, 2003.
  • Crump M, Tu D, Shepherd L, et al.: Risk of acute leukemia following epirubicin-based adjuvant chemotherapy: a report from the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 21 (16): 3066-71, 2003.
  • Praga C, Bergh J, Bliss J, et al.: Risk of acute myeloid leukemia and myelodysplastic syndrome in trials of adjuvant epirubicin for early breast cancer: correlation with doses of epirubicin and cyclophosphamide. J Clin Oncol 23 (18): 4179-91, 2005.
  • Schagen SB, Muller MJ, Boogerd W, et al.: Change in cognitive function after chemotherapy: a prospective longitudinal study in breast cancer patients. J Natl Cancer Inst 98 (23): 1742-5, 2006.
  • Peto R, Davies C, Godwin J, et al.: Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 379 (9814): 432-44, 2012.
  • Mehta RS: Dose-dense and/or metronomic schedules of specific chemotherapies consolidate the chemosensitivity of triple-negative breast cancer: a step toward reversing triple-negative paradox. J Clin Oncol 26 (19): 3286-8; author reply 3288, 2008.
  • Liedtke C, Mazouni C, Hess KR, et al.: Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26 (8): 1275-81, 2008.
  • Silver DP, Richardson AL, Eklund AC, et al.: Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol 28 (7): 1145-53, 2010.
  • Anders CK, Winer EP, Ford JM, et al.: Poly(ADP-Ribose) polymerase inhibition: "targeted" therapy for triple-negative breast cancer. Clin Cancer Res 16 (19): 4702-10, 2010.
  • Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al.: Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353 (16): 1659-72, 2005.
  • Cameron D, Piccart-Gebhart MJ, Gelber RD, et al.: 11 years' follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. Lancet 389 (10075): 1195-1205, 2017.
  • Romond EH, Perez EA, Bryant J, et al.: Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353 (16): 1673-84, 2005.
  • Perez E, Romond E, Suman V, et al.: Updated results of the combined analysis of NCCTG N9831 and NSABP B-31 adjuvant chemotherapy with/without trastuzumab in patiens with HER2-positive breast cancer. [Abstract] J Clin Oncol 25 (Suppl 18): 512, 6s, 2007.
  • Perez EA, Romond EH, Suman VJ, et al.: Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol 32 (33): 3744-52, 2014.
  • Slamon D, Eiermann W, Robert N, et al.: Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 365 (14): 1273-83, 2011.
  • Joensuu H, Kellokumpu-Lehtinen PL, Bono P, et al.: Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med 354 (8): 809-20, 2006.
  • Pivot X, Romieu G, Debled M, et al.: 6 months versus 12 months of adjuvant trastuzumab in early breast cancer (PHARE): final analysis of a multicentre, open-label, phase 3 randomised trial. Lancet 393 (10191): 2591-2598, 2019.
  • Mavroudis D, Saloustros E, Malamos N, et al.: Six versus 12 months of adjuvant trastuzumab in combination with dose-dense chemotherapy for women with HER2-positive breast cancer: a multicenter randomized study by the Hellenic Oncology Research Group (HORG). Ann Oncol 26 (7): 1333-40, 2015.
  • Earl HM, Hiller L, Vallier AL, et al.: 6 versus 12 months of adjuvant trastuzumab for HER2-positive early breast cancer (PERSEPHONE): 4-year disease-free survival results of a randomised phase 3 non-inferiority trial. Lancet 393 (10191): 2599-2612, 2019.
  • Tan-Chiu E, Yothers G, Romond E, et al.: Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol 23 (31): 7811-9, 2005.
  • Slamon D, Eiermann W, Robert N, et al.: BCIRG 006: 2nd interim analysis phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel (AC->T) with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab (AC->TH) with docetaxel, carboplatin and trastuzumab (TCH) in Her2neu positive early breast cancer patients. [Abstract] 29th Annual San Antonio Breast Cancer Symposium, December 14-17, 2006, San Antonio, Texas. A-52, 2006.
  • Piccart-Gebhart M, Holmes E, Baselga J, et al.: Adjuvant Lapatinib and Trastuzumab for Early Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer: Results From the Randomized Phase III Adjuvant Lapatinib and/or Trastuzumab Treatment Optimization Trial. J Clin Oncol 34 (10): 1034-42, 2016.
  • von Minckwitz G, Procter M, de Azambuja E, et al.: Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. N Engl J Med 377 (2): 122-131, 2017.
  • Chan A, Delaloge S, Holmes FA, et al.: Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 17 (3): 367-77, 2016.
  • Martin M, Holmes FA, Ejlertsen B, et al.: Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 18 (12): 1688-1700, 2017.
  • Burstein HJ, Temin S, Anderson H, et al.: Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: american society of clinical oncology clinical practice guideline focused update. J Clin Oncol 32 (21): 2255-69, 2014.
  • Pan H, Gray R, Braybrooke J, et al.: 20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years. N Engl J Med 377 (19): 1836-1846, 2017.
  • Colleoni M, Gelber S, Goldhirsch A, et al.: Tamoxifen after adjuvant chemotherapy for premenopausal women with lymph node-positive breast cancer: International Breast Cancer Study Group Trial 13-93. J Clin Oncol 24 (9): 1332-41, 2006.
  • Fisher B, Dignam J, Bryant J, et al.: Five versus more than five years of tamoxifen for lymph node-negative breast cancer: updated findings from the National Surgical Adjuvant Breast and Bowel Project B-14 randomized trial. J Natl Cancer Inst 93 (9): 684-90, 2001.
  • Stewart HJ, Prescott RJ, Forrest AP: Scottish adjuvant tamoxifen trial: a randomized study updated to 15 years. J Natl Cancer Inst 93 (6): 456-62, 2001.
  • Tormey DC, Gray R, Falkson HC: Postchemotherapy adjuvant tamoxifen therapy beyond five years in patients with lymph node-positive breast cancer. Eastern Cooperative Oncology Group. J Natl Cancer Inst 88 (24): 1828-33, 1996.
  • Davies C, Pan H, Godwin J, et al.: Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381 (9869): 805-16, 2013.
  • Albain KS, Barlow WE, Ravdin PM, et al.: Adjuvant chemotherapy and timing of tamoxifen in postmenopausal patients with endocrine-responsive, node-positive breast cancer: a phase 3, open-label, randomised controlled trial. Lancet 374 (9707): 2055-63, 2009.
  • Eisen A, Messersmith J, Franek M, et al.: Adjuvant ovarian ablation in the treatment of premenopausal women with early stage invasive breast cancer. Ontario, Canada: Cancer Care, 2010. Evidence-based Series # 1-9: Section 1. Available online. Last accessed October 3, 2019.
  • Adjuvant ovarian ablation versus CMF chemotherapy in premenopausal women with pathological stage II breast carcinoma: the Scottish trial. Scottish Cancer Trials Breast Group and ICRF Breast Unit, Guy's Hospital, London. Lancet 341 (8856): 1293-8, 1993.
  • Schmid P, Untch M, Kossé V, et al.: Leuprorelin acetate every-3-months depot versus cyclophosphamide, methotrexate, and fluorouracil as adjuvant treatment in premenopausal patients with node-positive breast cancer: the TABLE study. J Clin Oncol 25 (18): 2509-15, 2007.
  • Ejlertsen B, Mouridsen HT, Jensen MB, et al.: Similar efficacy for ovarian ablation compared with cyclophosphamide, methotrexate, and fluorouracil: from a randomized comparison of premenopausal patients with node-positive, hormone receptor-positive breast cancer. J Clin Oncol 24 (31): 4956-62, 2006.
  • Wolff AC, Davidson NE: Still waiting after 110 years: the optimal use of ovarian ablation as adjuvant therapy for breast cancer. J Clin Oncol 24 (31): 4949-51, 2006.
  • Boccardo F, Rubagotti A, Amoroso D, et al.: Cyclophosphamide, methotrexate, and fluorouracil versus tamoxifen plus ovarian suppression as adjuvant treatment of estrogen receptor-positive pre-/perimenopausal breast cancer patients: results of the Italian Breast Cancer Adjuvant Study Group 02 randomized trial. boccardo@hp380.ist.unige.it. J Clin Oncol 18 (14): 2718-27, 2000.
  • Winer EP, Hudis C, Burstein HJ, et al.: American Society of Clinical Oncology technology assessment on the use of aromatase inhibitors as adjuvant therapy for women with hormone receptor-positive breast cancer: status report 2002. J Clin Oncol 20 (15): 3317-27, 2002.
  • Tevaarwerk AJ, Wang M, Zhao F, et al.: Phase III comparison of tamoxifen versus tamoxifen plus ovarian function suppression in premenopausal women with node-negative, hormone receptor-positive breast cancer (E-3193, INT-0142): a trial of the Eastern Cooperative Oncology Group. J Clin Oncol 32 (35): 3948-58, 2014.
  • Francis PA, Regan MM, Fleming GF, et al.: Adjuvant ovarian suppression in premenopausal breast cancer. N Engl J Med 372 (5): 436-46, 2015.
  • Gnant M, Mlineritsch B, Stoeger H, et al.: Adjuvant endocrine therapy plus zoledronic acid in premenopausal women with early-stage breast cancer: 62-month follow-up from the ABCSG-12 randomised trial. Lancet Oncol 12 (7): 631-41, 2011.
  • Pagani O, Regan MM, Walley BA, et al.: Adjuvant exemestane with ovarian suppression in premenopausal breast cancer. N Engl J Med 371 (2): 107-18, 2014.
  • Bernhard J, Luo W, Ribi K, et al.: Patient-reported outcomes with adjuvant exemestane versus tamoxifen in premenopausal women with early breast cancer undergoing ovarian suppression (TEXT and SOFT): a combined analysis of two phase 3 randomised trials. Lancet Oncol 16 (7): 848-58, 2015.
  • Dowsett M, Forbes JF, Bradley R, et al.: Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. Lancet 386 (10001): 1341-52, 2015.
  • The ATAC Trialists' Group. Arimidex, tamoxifen alone or in combination: Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 359 (9324): 2131-9, 2002.
  • Howell A, Cuzick J, Baum M, et al.: Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years' adjuvant treatment for breast cancer. Lancet 365 (9453): 60-2, 2005.
  • Thürlimann B, Keshaviah A, Coates AS, et al.: A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med 353 (26): 2747-57, 2005.
  • Coates AS, Keshaviah A, Thürlimann B, et al.: Five years of letrozole compared with tamoxifen as initial adjuvant therapy for postmenopausal women with endocrine-responsive early breast cancer: update of study BIG 1-98. J Clin Oncol 25 (5): 486-92, 2007.
  • Boccardo F, Rubagotti A, Guglielmini P, et al.: Switching to anastrozole versus continued tamoxifen treatment of early breast cancer. Updated results of the Italian tamoxifen anastrozole (ITA) trial. Ann Oncol 17 (Suppl 7): vii10-4, 2006.
  • Jakesz R, Jonat W, Gnant M, et al.: Switching of postmenopausal women with endocrine-responsive early breast cancer to anastrozole after 2 years' adjuvant tamoxifen: combined results of ABCSG trial 8 and ARNO 95 trial. Lancet 366 (9484): 455-62, 2005 Aug 6-12.
  • Boccardo F, Rubagotti A, Aldrighetti D, et al.: Switching to an aromatase inhibitor provides mortality benefit in early breast carcinoma: pooled analysis of 2 consecutive trials. Cancer 109 (6): 1060-7, 2007.
  • Coombes RC, Hall E, Gibson LJ, et al.: A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer. N Engl J Med 350 (11): 1081-92, 2004.
  • Coombes RC, Kilburn LS, Snowdon CF, et al.: Survival and safety of exemestane versus tamoxifen after 2-3 years' tamoxifen treatment (Intergroup Exemestane Study): a randomised controlled trial. Lancet 369 (9561): 559-70, 2007.
  • van de Velde CJ, Rea D, Seynaeve C, et al.: Adjuvant tamoxifen and exemestane in early breast cancer (TEAM): a randomised phase 3 trial. Lancet 377 (9762): 321-31, 2011.
  • Regan MM, Neven P, Giobbie-Hurder A, et al.: Assessment of letrozole and tamoxifen alone and in sequence for postmenopausal women with steroid hormone receptor-positive breast cancer: the BIG 1-98 randomised clinical trial at 8·1 years median follow-up. Lancet Oncol 12 (12): 1101-8, 2011.
  • De Placido S, Gallo C, De Laurentiis M, et al.: Adjuvant anastrozole versus exemestane versus letrozole, upfront or after 2 years of tamoxifen, in endocrine-sensitive breast cancer (FATA-GIM3): a randomised, phase 3 trial. Lancet Oncol 19 (4): 474-485, 2018.
  • Goss PE, Ingle JN, Pritchard KI, et al.: Exemestane versus anastrozole in postmenopausal women with early breast cancer: NCIC CTG MA.27--a randomized controlled phase III trial. J Clin Oncol 31 (11): 1398-404, 2013.
  • Goss PE, Hershman DL, Cheung AM, et al.: Effects of adjuvant exemestane versus anastrozole on bone mineral density for women with early breast cancer (MA.27B): a companion analysis of a randomised controlled trial. Lancet Oncol 15 (4): 474-82, 2014.
  • Smith I, Yardley D, Burris H, et al.: Comparative Efficacy and Safety of Adjuvant Letrozole Versus Anastrozole in Postmenopausal Patients With Hormone Receptor-Positive, Node-Positive Early Breast Cancer: Final Results of the Randomized Phase III Femara Versus Anastrozole Clinical Evaluation (FACE) Trial. J Clin Oncol 35 (10): 1041-1048, 2017.
  • Goss PE, Ingle JN, Martino S, et al.: A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N Engl J Med 349 (19): 1793-802, 2003.
  • Bryant J, Wolmark N: Letrozole after tamoxifen for breast cancer--what is the price of success? N Engl J Med 349 (19): 1855-7, 2003.
  • Burstein HJ: Beyond tamoxifen--extending endocrine treatment for early-stage breast cancer. N Engl J Med 349 (19): 1857-9, 2003.
  • Goss PE, Ingle JN, Martino S, et al.: Randomized trial of letrozole following tamoxifen as extended adjuvant therapy in receptor-positive breast cancer: updated findings from NCIC CTG MA.17. J Natl Cancer Inst 97 (17): 1262-71, 2005.
  • Mamounas EP, Jeong JH, Wickerham DL, et al.: Benefit from exemestane as extended adjuvant therapy after 5 years of adjuvant tamoxifen: intention-to-treat analysis of the National Surgical Adjuvant Breast And Bowel Project B-33 trial. J Clin Oncol 26 (12): 1965-71, 2008.
  • Goss PE, Ingle JN, Pritchard KI, et al.: Extending Aromatase-Inhibitor Adjuvant Therapy to 10 Years. N Engl J Med 375 (3): 209-19, 2016.
  • Blok EJ, Kroep JR, Meershoek-Klein Kranenbarg E, et al.: Optimal Duration of Extended Adjuvant Endocrine Therapy for Early Breast Cancer; Results of the IDEAL Trial (BOOG 2006-05). J Natl Cancer Inst 110 (1): , 2018.
  • Mamounas EP, Bandos H, Lembersky BC, et al.: Use of letrozole after aromatase inhibitor-based therapy in postmenopausal breast cancer (NRG Oncology/NSABP B-42): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 20 (1): 88-99, 2019.
  • Colleoni M, Luo W, Karlsson P, et al.: Extended adjuvant intermittent letrozole versus continuous letrozole in postmenopausal women with breast cancer (SOLE): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 19 (1): 127-138, 2018.
  • Tjan-Heijnen VCG, van Hellemond IEG, Peer PGM, et al.: Extended adjuvant aromatase inhibition after sequential endocrine therapy (DATA): a randomised, phase 3 trial. Lancet Oncol 18 (11): 1502-1511, 2017.
  • Gnant M, Steger G, Greil R, et al.: A prospective randomized multi-center phase-III trial of additional 2 versus additional 5 years of anastrozole after initial 5 years of adjuvant endocrine therapy: results from 3,484 postmenopausal women in the ABCSG-16 trial. [Abstract] Cancer Res 78 (4 Suppl): A-GS3-01, 2018.
  • Coleman R, Powles T, Paterson A, et al.: Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet 386 (10001): 1353-61, 2015.
  • Gnant M, Pfeiler G, Steger GG, et al.: Adjuvant denosumab in postmenopausal patients with hormone receptor-positive breast cancer (ABCSG-18): disease-free survival results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 20 (3): 339-351, 2019.
  • Mauri D, Pavlidis N, Ioannidis JP: Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J Natl Cancer Inst 97 (3): 188-94, 2005.
  • Early Breast Cancer Trialists' Collaborative Group (EBCTCG): Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol 19 (1): 27-39, 2018.
  • Bear HD, Anderson S, Brown A, et al.: The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol 21 (22): 4165-74, 2003.
  • Smith IE, Dowsett M, Ebbs SR, et al.: Neoadjuvant treatment of postmenopausal breast cancer with anastrozole, tamoxifen, or both in combination: the Immediate Preoperative Anastrozole, Tamoxifen, or Combined with Tamoxifen (IMPACT) multicenter double-blind randomized trial. J Clin Oncol 23 (22): 5108-16, 2005.
  • Cortazar P, Zhang L, Untch M, et al.: Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384 (9938): 164-72, 2014.
  • Carlson RW, Allred DC, Anderson BO, et al.: Breast cancer. Clinical practice guidelines in oncology. J Natl Compr Canc Netw 7 (2): 122-92, 2009.
  • Boughey JC, Suman VJ, Mittendorf EA, et al.: Sentinel lymph node surgery after neoadjuvant chemotherapy in patients with node-positive breast cancer: the ACOSOG Z1071 (Alliance) clinical trial. JAMA 310 (14): 1455-61, 2013.
  • Kuehn T, Bauerfeind I, Fehm T, et al.: Sentinel-lymph-node biopsy in patients with breast cancer before and after neoadjuvant chemotherapy (SENTINA): a prospective, multicentre cohort study. Lancet Oncol 14 (7): 609-18, 2013.
  • Alvarado R, Yi M, Le-Petross H, et al.: The role for sentinel lymph node dissection after neoadjuvant chemotherapy in patients who present with node-positive breast cancer. Ann Surg Oncol 19 (10): 3177-84, 2012.
  • Lyman GH, Temin S, Edge SB, et al.: Sentinel lymph node biopsy for patients with early-stage breast cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 32 (13): 1365-83, 2014.
  • Smith IC, Heys SD, Hutcheon AW, et al.: Neoadjuvant chemotherapy in breast cancer: significantly enhanced response with docetaxel. J Clin Oncol 20 (6): 1456-66, 2002.
  • von Minckwitz G, Kümmel S, Vogel P, et al.: Intensified neoadjuvant chemotherapy in early-responding breast cancer: phase III randomized GeparTrio study. J Natl Cancer Inst 100 (8): 552-62, 2008.
  • Fisher B, Bryant J, Wolmark N, et al.: Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol 16 (8): 2672-85, 1998.
  • Fisher ER, Wang J, Bryant J, et al.: Pathobiology of preoperative chemotherapy: findings from the National Surgical Adjuvant Breast and Bowel (NSABP) protocol B-18. Cancer 95 (4): 681-95, 2002.
  • Rastogi P, Anderson SJ, Bear HD, et al.: Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol 26 (5): 778-85, 2008.
  • van der Hage JA, van de Velde CJ, Julien JP, et al.: Preoperative chemotherapy in primary operable breast cancer: results from the European Organization for Research and Treatment of Cancer trial 10902. J Clin Oncol 19 (22): 4224-37, 2001.
  • Vriens BE, Aarts MJ, de Vries B, et al.: Doxorubicin/cyclophosphamide with concurrent versus sequential docetaxel as neoadjuvant treatment in patients with breast cancer. Eur J Cancer 49 (15): 3102-10, 2013.
  • Untch M, Jackisch C, Schneeweiss A, et al.: Nab-paclitaxel versus solvent-based paclitaxel in neoadjuvant chemotherapy for early breast cancer (GeparSepto-GBG 69): a randomised, phase 3 trial. Lancet Oncol 17 (3): 345-56, 2016.
  • von Minckwitz G, Rezai M, Loibl S, et al.: Capecitabine in addition to anthracycline- and taxane-based neoadjuvant treatment in patients with primary breast cancer: phase III GeparQuattro study. J Clin Oncol 28 (12): 2015-23, 2010.
  • von Minckwitz G, Schneeweiss A, Loibl S, et al.: Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol 15 (7): 747-56, 2014.
  • Sikov WM, Berry DA, Perou CM, et al.: Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol 33 (1): 13-21, 2015.
  • Rastogi P, Buyse ME, Swain SM, et al.: Concurrent bevacizumab with a sequential regimen of doxorubicin and cyclophosphamide followed by docetaxel and capecitabine as neoadjuvant therapy for HER2- locally advanced breast cancer: a phase II trial of the NSABP Foundation Research Group. Clin Breast Cancer 11 (4): 228-34, 2011.
  • Untch M, Loibl S, Bischoff J, et al.: Lapatinib versus trastuzumab in combination with neoadjuvant anthracycline-taxane-based chemotherapy (GeparQuinto, GBG 44): a randomised phase 3 trial. Lancet Oncol 13 (2): 135-44, 2012.
  • Buzdar AU, Ibrahim NK, Francis D, et al.: Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J Clin Oncol 23 (16): 3676-85, 2005.
  • Untch M, Rezai M, Loibl S, et al.: Neoadjuvant treatment with trastuzumab in HER2-positive breast cancer: results from the GeparQuattro study. J Clin Oncol 28 (12): 2024-31, 2010.
  • Gianni L, Eiermann W, Semiglazov V, et al.: Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet 375 (9712): 377-84, 2010.
  • Gianni L, Eiermann W, Semiglazov V, et al.: Neoadjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): follow-up of a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol 15 (6): 640-7, 2014.
  • Buzdar AU, Suman VJ, Meric-Bernstam F, et al.: Fluorouracil, epirubicin, and cyclophosphamide (FEC-75) followed by paclitaxel plus trastuzumab versus paclitaxel plus trastuzumab followed by FEC-75 plus trastuzumab as neoadjuvant treatment for patients with HER2-positive breast cancer (Z1041): a randomised, controlled, phase 3 trial. Lancet Oncol 14 (13): 1317-25, 2013.
  • Gligorov J, Ataseven B, Verrill M, et al.: Safety and tolerability of subcutaneous trastuzumab for the adjuvant treatment of human epidermal growth factor receptor 2-positive early breast cancer: SafeHer phase III study's primary analysis of 2573 patients. Eur J Cancer 82: 237-246, 2017.
  • Ismael G, Hegg R, Muehlbauer S, et al.: Subcutaneous versus intravenous administration of (neo)adjuvant trastuzumab in patients with HER2-positive, clinical stage I-III breast cancer (HannaH study): a phase 3, open-label, multicentre, randomised trial. Lancet Oncol 13 (9): 869-78, 2012.
  • Jackisch C, Stroyakovskiy D, Pivot X, et al.: Subcutaneous vs Intravenous Trastuzumab for Patients With ERBB2-Positive Early Breast Cancer: Final Analysis of the HannaH Phase 3 Randomized Clinical Trial. JAMA Oncol 5 (5): e190339, 2019.
  • Gianni L, Pienkowski T, Im YH, et al.: Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol 13 (1): 25-32, 2012.
  • Baselga J, Bradbury I, Eidtmann H, et al.: Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet 379 (9816): 633-40, 2012.
  • Gianni L, Pienkowski T, Im YH, et al.: 5-year analysis of neoadjuvant pertuzumab and trastuzumab in patients with locally advanced, inflammatory, or early-stage HER2-positive breast cancer (NeoSphere): a multicentre, open-label, phase 2 randomised trial. Lancet Oncol 17 (6): 791-800, 2016.
  • Schneeweiss A, Chia S, Hickish T, et al.: Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Ann Oncol 24 (9): 2278-84, 2013.
  • Carey LA, Berry DA, Cirrincione CT, et al.: Molecular Heterogeneity and Response to Neoadjuvant Human Epidermal Growth Factor Receptor 2 Targeting in CALGB 40601, a Randomized Phase III Trial of Paclitaxel Plus Trastuzumab With or Without Lapatinib. J Clin Oncol 34 (6): 542-9, 2016.
  • de Azambuja E, Holmes AP, Piccart-Gebhart M, et al.: Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomised, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncol 15 (10): 1137-46, 2014.
  • Lenihan D, Suter T, Brammer M, et al.: Pooled analysis of cardiac safety in patients with cancer treated with pertuzumab. Ann Oncol 23 (3): 791-800, 2012.
  • Valachis A, Nearchou A, Polyzos NP, et al.: Cardiac toxicity in breast cancer patients treated with dual HER2 blockade. Int J Cancer 133 (9): 2245-52, 2013.
  • Eiermann W, Paepke S, Appfelstaedt J, et al.: Preoperative treatment of postmenopausal breast cancer patients with letrozole: A randomized double-blind multicenter study. Ann Oncol 12 (11): 1527-32, 2001.
  • Preece PE, Wood RA, Mackie CR, et al.: Tamoxifen as initial sole treatment of localised breast cancer in elderly women: a pilot study. Br Med J (Clin Res Ed) 284 (6319): 869-70, 1982.
  • Masuda N, Lee SJ, Ohtani S, et al.: Adjuvant Capecitabine for Breast Cancer after Preoperative Chemotherapy. N Engl J Med 376 (22): 2147-2159, 2017.
  • von Minckwitz G, Huang CS, Mano MS, et al.: Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N Engl J Med 380 (7): 617-628, 2019.
  • Impact of follow-up testing on survival and health-related quality of life in breast cancer patients. A multicenter randomized controlled trial. The GIVIO Investigators. JAMA 271 (20): 1587-92, 1994.
  • Rosselli Del Turco M, Palli D, Cariddi A, et al.: Intensive diagnostic follow-up after treatment of primary breast cancer. A randomized trial. National Research Council Project on Breast Cancer follow-up. JAMA 271 (20): 1593-7, 1994.
  • Khatcheressian JL, Wolff AC, Smith TJ, et al.: American Society of Clinical Oncology 2006 update of the breast cancer follow-up and management guidelines in the adjuvant setting. J Clin Oncol 24 (31): 5091-7, 2006.
  • Breast Cancer Treatment (Adult) (PDQ®)

    Early/Localized/Operable Breast Cancer

    Treatment Option Overview for Early/Localized/Operable Breast Cancer

    Standard treatment options for early, localized, or operable breast cancer may include the following:

  • Breast-conserving surgery (lumpectomy) and sentinel lymph node (SLN) biopsy with or without axillary lymph node dissection for positive SLNs.
  • Modified radical mastectomy (removal of the entire breast with axillary dissection of levels I and II) with or without breast reconstruction and sentinel node biopsy with or without axillary lymph node dissection for positive SLNs.
  • Axillary node–negative breast cancer (postmastectomy):
  • No additional therapy.
  • Radiation therapy.
  • Axillary node–positive breast cancer (postmastectomy):
  • For one to three nodes, the role of regional radiation therapy to the infra/supraclavicular nodes, internal mammary nodes, axillary nodes, and chest wall is unclear.
  • For four or more nodes or extranodal involvement, regional radiation therapy is advised.
  • Axillary node–negative or positive breast cancer (post–breast-conserving therapy):
  • Whole-breast radiation therapy.
  • Therapy depends on many factors including stage, grade, molecular status of the tumor (e.g., estrogen receptor [ER], progesterone receptor [PR], human epidermal growth factor receptor 2 [HER2/neu], or triple-negative [ER-negative, PR-negative, and HER2/neu–negative] status). Adjuvant treatment options may include the following:
  • Tamoxifen.
  • Aromatase inhibitor (AI) therapy.
  • Ovarian function suppression.
  • Chemotherapy.
  • Chemotherapy.
  • HER2 targeted therapy.
  • Endocrine therapy.
  • Surgery

    Stages I, II, IIIA, and operable IIIC breast cancer often require a multimodal approach to treatment. The diagnostic biopsy and surgical procedure that will be used as primary treatment should be performed as two separate procedures:

  • Biopsy. In many cases, the diagnosis of breast carcinoma is made by core needle biopsy.
  • Surgical procedure. After the presence of a malignancy is confirmed by biopsy, the following surgical treatment options can be discussed with the patient before a therapeutic procedure is selected:
  • Breast-conserving surgery.
  • Modified radical mastectomy (removal of the entire breast with axillary dissection of levels I and II) with or without breast reconstruction.
  • To guide the selection of adjuvant therapy, many factors including stage, grade, and molecular status of the tumor (e.g., ER, PR, HER2/neu, or triple-negative status) are considered.

    Locoregional treatment

    Selection of a local therapeutic approach depends on the following:

  • Location and size of the lesion.
  • Analysis of the mammogram.
  • Breast size.
  • Patient’s desire to preserve the breast.
  • Options for surgical management of the primary tumor include the following:

  • Breast-conserving surgery plus radiation therapy. All histologic types of invasive breast cancer may be treated with breast-conserving surgery plus radiation therapy.
  • However, the presence of inflammatory breast cancer, regardless of histologic subtype, is a contraindication to breast-conserving therapy. The presence of multifocal disease in the breast and a history of collagen vascular disease are relative contraindications to breast-conserving therapy.
  • Mastectomy with or without breast reconstruction.
  • Surgical staging of the axilla should also be performed.

    Survival is equivalent with any of these options, as documented in the trial of the European Organization for Research and Treatment of Cancer (EORTC) (EORTC-10801) and other prospective randomized trials.

    Also, a retrospective study of 753 patients who were divided into three groups based on hormone receptor status (ER positive or PR positive; ER negative and PR negative but HER2/neu positive; and triple negative) found no differences in disease control within the breast in patients treated with standard breast-conserving surgery; however, there are not yet substantive data to support this finding.

    The rate of local recurrence in the breast after conservative treatment is low and varies slightly with the surgical technique used (e.g., lumpectomy, quadrantectomy, segmental mastectomy, and others). Whether completely clear microscopic margins are necessary has been debated.

    However, a multidisciplinary consensus panel recently used margin width and ipsilateral breast tumor recurrence from a meta-analysis of 33 studies (N = 28,162 patients) as the primary evidence base for a new consensus regarding margins in stage I and stage II breast cancer patients treated with breast-conserving surgery plus radiation therapy. Results of the meta-analysis include the following:

  • Positive margins (ink on invasive carcinoma or ductal carcinoma in situ) were associated with a twofold increase in the risk of ipsilateral breast tumor recurrence compared with negative margins.
  • More widely clear margins were not found to significantly decrease the rate of ipsilateral breast tumor recurrence compared with no ink on tumor. Thus, it was recommended that the use of no ink on tumor be the new standard for an adequate margin in invasive cancer.
  • There was no evidence that more widely clear margins reduced ipsilateral breast tumor recurrence for young patients or for those with unfavorable biology, lobular cancers, or cancers with an extensive intraductal component.
  • For patients undergoing partial mastectomy, margins may be positive after primary surgery, often leading to re-excision. A clinical trial of 235 patients with stage 0 to III breast cancer who underwent partial mastectomy, with or without resection of selective margins, randomly assigned patients to have additional cavity shave margins resected (shave group) or not (no-shave group).

    Patients in the shave group had a significantly lower rate of positive margins than those in the no-shave group (19% vs. 34%, P = .01) and a lower rate of second surgery for clearing margins (10% vs. 21%, P = .02).

    [Level of evidence: 1iiDiv]

    Axillary lymph node management

    Axillary node status remains the most important predictor of outcome in breast cancer patients. Evidence is insufficient to recommend that lymph node staging can be omitted in most patients with invasive breast cancer. Several groups have attempted to define a population of women in whom the probability of nodal metastasis is low enough to preclude axillary node biopsy. In these single-institution case series, the prevalence of positive nodes in patients with T1a tumors ranged from 9% to 16%.

    Another series reported the incidence of axillary node relapse in patients with T1a tumors treated without axillary lymph node dissection (ALND) was 2%.

    [Level of evidence: 3iiiA]

    The axillary lymph nodes are staged to aid in determining prognosis and therapy. SLN biopsy is the initial standard axillary staging procedure performed in women with invasive breast cancer. The SLN is defined as any node that receives drainage directly from the primary tumor; therefore, allowing for more than one SLN, which is often the case. Studies have shown that the injection of technetium Tc 99m-labeled sulfur colloid, vital blue dye, or both around the tumor or biopsy cavity, or in the subareolar area, and subsequent drainage of these compounds to the axilla results in the identification of the SLN in 92% to 98% of patients. These reports demonstrate a 97.5% to 100% concordance between SLN biopsy and complete ALND.

    Because of the following body of evidence, SLN biopsy is the standard initial surgical staging procedure of the axilla for women with invasive breast cancer. SLN biopsy alone is associated with less morbidity than axillary lymphadenectomy.

    Evidence (SLN biopsy):

  • A randomized trial of 1,031 women compared SLN biopsy followed by ALND when the SLN was positive with ALND in all patients.
  • [Level of evidence: 1iiC]
  • Quality of life (QOL) at 1 year (as assessed by the frequency of patients experiencing a clinically significant deterioration in the Trial Outcome Index of the Functional Assessment of Cancer Therapy-Breast scale) was superior in the SLN biopsy group (23% deteriorating in the SLN biopsy group vs. 35% in the ALND group; P = .001). Arm function was also better in the SLN group.
  • The National Surgical Adjuvant Breast and Bowel Project’s (NSABP-B-32 [NCT00003830]) multicenter, phase III trial randomly assigned women (N = 5,611) to undergo either SLN plus ALND or SLN resection alone, with ALND only if the SLNs were positive.
  • [Level of evidence: 1iiA]
  • The study showed no detectable difference in overall survival (OS), disease-free survival (DFS), and regional control. OS was 91.8% for SLN plus ALND versus 90.3% for SLN resection alone (P = .12).
  • Because of the following trial results, ALND is unnecessary after a positive SLN biopsy in patients with limited SLN-positive breast cancer treated with breast conservation or mastectomy, radiation, and systemic therapy.

    Evidence (ALND after a positive SLN biopsy in patients with limited SLN-positive breast cancer):

  • A multicenter, randomized clinical trial sought to determine whether ALND is required after an SLN biopsy reveals an SLN metastasis of breast cancer. This phase III noninferiority trial planned to randomly assign 1,900 women with clinical T1 or T2 invasive breast cancer without palpable adenopathy and with one to two SLNs containing metastases identified by frozen section to undergo ALND or no further axillary treatment. All patients underwent lumpectomy, tangential whole-breast radiation therapy, and appropriate systemic therapy; OS was the primary endpoint. Because of enrollment challenges, a total of 891 women out of a target enrollment of 1,900 women were randomly assigned to one of the two treatment arms.
  • [Level of evidence: 1iiA]
  • At a median follow-up of 6.3 years, 5-year OS was 91.8% (95% confidence interval [CI], 89.1%–94.5%) with ALND and 92.5% (95% CI, 90.0–95.1%) with SLN biopsy alone.
  • The secondary endpoint of 5-year DFS was 82.2% (95% CI, 78.3%–86.3%) with ALND and 83.9% (95% CI, 80.2%–87.9%) with SLN biopsy alone.
  • In a similarly designed trial, 929 women with breast tumors smaller than 5 cm and SLN involvement smaller than 2 mm were randomly assigned to ALND or no ALND.
  • [Level of evidence: 1iiA]
  • Patients without axillary dissection had fewer DFS events (hazard ratio [HR], 0.78; 95% CI, 0.55–1.11).
  • No difference in OS was observed.
  • The AMAROS (NCT00014612) trial studied ALND and axillary radiation therapy after identification of a positive sentinel node.
  • [Level of evidence: 1iiA]
  • ALND and axillary radiation therapy provided excellent and comparable axillary control for patients with T1 or T2 primary breast cancer and no palpable lymphadenopathy who underwent breast-conserving therapy or mastectomy.
  • The use of axillary radiation therapy was also associated with significantly less morbidity.
  • For patients who require an ALND, the standard evaluation usually involves only a level I and II dissection, thereby removing a satisfactory number of nodes for evaluation (i.e., at least 6–10), while reducing morbidity from the procedure.

    Breast reconstruction

    For patients who opt for a total mastectomy, reconstructive surgery may be performed at the time of the mastectomy (i.e., immediate reconstruction) or at some subsequent time (i.e., delayed reconstruction).

    Breast contour can be restored by the following:

  • Submuscular insertion of an artificial implant (silicone- or saline-filled). If an immediate implant cannot technically be performed, a tissue expander can be inserted beneath the pectoral muscle. Saline is injected into the expander to stretch the tissues for a period of weeks or months until the desired volume is obtained. The tissue expander is then replaced by a permanent implant. (Visit the U. S. Food and Drug Administration's [FDA] website for more information on breast implants.)
  • Rectus muscle or other flap. Muscle flaps require a considerably more complicated and prolonged operative procedure, and blood transfusions may be required.
  • After breast reconstruction, radiation therapy can be delivered to the chest wall and regional nodes in either the adjuvant or local recurrent disease setting. Radiation therapy after reconstruction with a breast prosthesis may affect cosmesis, and the incidence of capsular fibrosis, pain, or the need for implant removal may be increased.

    Postoperative Radiation Therapy

    Radiation therapy is regularly employed after breast-conserving surgery. Radiation therapy is also indicated for high-risk postmastectomy patients. The main goal of adjuvant radiation therapy is to eradicate residual disease thus reducing local recurrence.

    Post–breast-conserving surgery

    For women who are treated with breast-conserving surgery without radiation therapy, the risk of recurrence in the conserved breast is substantial (>20%) even in confirmed axillary lymph node–negative women.

    Although all trials assessing the role of radiation therapy in breast-conserving therapy have shown highly statistically significant reductions in local recurrence rate, no single trial has demonstrated a statistically significant reduction in mortality. However, a large meta-analysis demonstrated a significant reduction in risk of recurrence and breast cancer death.

    Thus, evidence supports the use of whole-breast radiation therapy after breast-conserving surgery.

    Evidence (breast-conserving surgery followed by radiation therapy):

    A 2011 meta-analysis of 17 clinical trials performed by the Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), which included over 10,000 women with early-stage breast cancer, supported whole-breast radiation therapy after breast-conserving surgery.

    [Level of evidence: 1iiA]

  • Whole-breast radiation therapy resulted in a significant reduction in the 10-year risk of recurrence compared with breast-conserving surgery alone (19% for whole-breast radiation therapy vs. 35% for breast-conserving surgery alone; relative risk (RR) = 0.52; 95% CI, 0.48–0.56) and a significant reduction in the 15-year risk of breast cancer death (21% for whole-breast radiation therapy vs. 25% for breast-conserving surgery alone; RR, 0.82; 95% CI, 0.75–0.90).
  • Regarding radiation dosing and schedule, the following has been noted:

  • Whole-breast radiation dose. Conventional whole-breast radiation therapy is delivered to the whole breast (with or without regional lymph nodes) in 1.8 Gy to 2 Gy daily fractions over about 5 to 6 weeks to a total dose of 45 Gy to 50 Gy.
  • Radiation boost. A further radiation boost is commonly given to the tumor bed. Two randomized trials conducted in Europe have shown that using boosts of 10 Gy to 16 Gy reduces the risk of local recurrence from 4.6% to 3.6% at 3 years (P = .044),
  • [Level of evidence: 1iiDiii] and from 7.3% to 4.3% at 5 years (P < .001).
  • [Level of evidence: 1iiDiii] Results were similar after a median follow-up of 17.2 years.
  • [Level of evidence: 1iiDii] If a boost is used, it can be delivered either by external-beam radiation therapy, generally with electrons, or by using an interstitial radioactive implant.
  • Radiation schedule. Some studies show that a shorter fractionation schedule of 42.5 Gy over 3 to 4 weeks is a reasonable alternative for some breast cancer patients.
  • A noninferiority trial of 1,234 randomly assigned patients with node-negative invasive breast cancer analyzed locoregional recurrence rates with conventional whole-breast radiation therapy versus a shorter fractionation schedule.
  • The 10-year locoregional relapse rate among women who received shorter fractionation was not inferior to conventional whole-breast radiation therapy (6.2% for a shorter fractionation schedule vs. 6.7% for whole-breast radiation therapy with absolute difference, 0.5 percentage points; 95% CI, −2.5 to 3.5).
  • Similarly, a combined analysis of the randomized United Kingdom Standardisation of Breast Radiotherapy trials (START), (START-A [ISRCTN59368779]) and START-B [ISRCTN59368779]), which collectively randomly assigned 4,451 women with completely excised invasive (pT1–3a, pN0–1, M0) early-stage breast cancer after breast-conserving surgery to receive conventional whole-breast radiation therapy dosing or shorter fractionation, revealed no difference in a 10-year locoregional relapse rate.
  • [Level of evidence: 1iiDii]
  • A meta-analysis that included the three trials mentioned above plus six others confirmed that differences with respect to local recurrence or cosmesis between shorter and conventional fractionation schedules were neither statistically nor clinically significant.
  • Additional studies are needed to determine whether shorter fractionation is appropriate for women with higher nodal disease burden.

    Regional nodal irradiation

    Regional nodal irradiation is routinely given postmastectomy to patients with involved lymph nodes; however, its role in patients who have breast-conserving surgery and whole-breast irradiation has been less clear. A randomized trial (NCT00005957) of 1,832 women showed that administering regional nodal irradiation after breast-conserving surgery and whole-breast irradiation reduces the risk of recurrence (10-year DFS, 82.0% vs. 77.0%; HR, 0.76; 95% CI, 0.61–0.94; P = .01) but does not affect survival (10-year OS, 82.8% vs. 81.8%; HR, 0.91; 95% CI, 0.72–1.13; P = .38).

    [Level of evidence: 1iiA]

    Similar findings were reported from the EORTC trial (NCT00002851). Women with a centrally or medially located primary tumor with or without axillary node involvement, or an externally located tumor with axillary involvement, were randomly assigned to receive whole-breast or thoracic-wall irradiation in addition to regional nodal irradiation or not. Breast-conserving surgery was performed for 76.1% of the study population, and the remaining study population underwent mastectomy. No improvement in OS was seen at 10 years among patients who underwent regional nodal irradiation when compared with patients who did not undergo regional nodal radiation (82.3% vs. 80.7%, P = .06). Distant DFS was improved among patients who underwent regional nodal irradiation when compared with patients who did not undergo regional nodal irradiation (78% vs. 75%, P = .02).

    [Level of evidence: 1iiA]

    A meta-analysis that combined the results of the two trials mentioned above found a marginally statistically significant difference in OS (HR, 0.88; 95% CI, 0.78–0.99; P = .034; absolute difference, 1.6% at 5 years).

    Postmastectomy

    Postoperative chest wall and regional lymph node adjuvant radiation therapy has traditionally been given to selected patients considered at high risk for locoregional failure after mastectomy. Patients at highest risk for local recurrence have one or more of the following:

  • Four or more positive axillary nodes.
  • Grossly evident extracapsular nodal extension.
  • Large primary tumors.
  • Very close or positive deep margins of resection of the primary tumor.
  • In this high-risk group, radiation therapy can decrease locoregional recurrence, even among those patients who receive adjuvant chemotherapy.

    Patients with one to three involved nodes without any of the high-risk factors are at low risk of local recurrence, and the value of routine use of adjuvant radiation therapy in this setting is unclear.

    Evidence (postoperative radiation therapy in patients with one to three involved lymph nodes):

  • The 2005 EBCTCG meta-analysis of 42,000 women in 78 randomized treatment comparisons indicated that radiation therapy is beneficial, regardless of the number of lymph nodes involved.
  • [Level of evidence: 1iiA]
  • For women with node-positive disease postmastectomy and axillary clearance (removal of axillary lymph nodes and surrounding fat), radiation therapy reduced the 5-year local recurrence risk from 23% to 6% (absolute gain, 17%; 95% CI, 15.2%–18.8%). This translated into a significant reduction (P = .002) in breast cancer mortality, 54.7% versus 60.1%, with an absolute gain of 5.4% (95% CI, 2.9%–7.9%).
  • In subgroup analyses, the 5-year local recurrence rate was reduced by 12% (95% CI, 8%–16%) for women with one to three involved lymph nodes and by 14% (95% CI, 10%–18%) for women with four or more involved lymph nodes. In an updated meta-analysis of 1,314 women with axillary dissection and one to three positive nodes, radiation therapy reduced locoregional recurrence (2P [2-sided significance level] < .00001), overall recurrence (RR, 0.68; 95% CI, 0.57–0.82; 2P = .00006), and breast cancer mortality (RR, 0.80; 95% CI, 0.67–0.95; 2P = .01).
  • [Level of evidence: 1iiA]
  • In contrast, for women at low risk of local recurrence with node-negative disease, the absolute reduction in 5-year local recurrence was only 4% (P = .002; 95% CI, 1.8%–6.2%), and there was not a statistically significant reduction in 15-year breast cancer mortality (absolute gain, 1.0%; P > .1; 95% CI, -0.8%–2.8%).
  • Further, an analysis of NSABP trials showed that even in patients with large (>5 cm) primary tumors and negative axillary lymph nodes, the risk of isolated locoregional recurrence was low enough (7.1%) that routine locoregional radiation therapy was not warranted.

    Timing of postoperative radiation therapy

    The optimal sequence of adjuvant chemotherapy and radiation therapy after breast-conserving surgery has been studied. Based on the following studies, delaying radiation therapy for several months after breast-conserving surgery until the completion of adjuvant chemotherapy does not appear to have a negative impact on overall outcome. Additionally, initiating chemotherapy soon after breast-conserving surgery may be preferable for patients at high risk of distant dissemination.

    Evidence (timing of postoperative radiation therapy):

  • In a randomized trial, patients received one of the following regimens:
  • [Level of evidence: 1iiA]
  • Chemotherapy first (n = 122), consisting of cyclophosphamide, methotrexate, fluorouracil (5-FU), and prednisone (CMFP) plus doxorubicin repeated every 21 days for four cycles, followed by breast radiation.
  • Breast radiation first (n = 122), followed by the same chemotherapy.
  • The following results were observed:

  • With a median follow-up of 5 years, OS was 73% for the radiation-first group and 81% for the chemotherapy-first group (P = .11).
  • The 5-year crude rate of first recurrence by site was 5% in the radiation-first group and 14% in the chemotherapy-first group for local recurrence and 32% in the radiation-first group and 20% in the chemotherapy-first group for distant or regional recurrence or both. This difference in the pattern of recurrence was of borderline statistical significance (P = .07).
  • Further analyses revealed that differences in recurrence patterns persisted for most subgroups except for those who had either negative tumor margins or one to three positive lymph nodes. For these two subgroups, sequence assignment made little difference in local or distant recurrence rates, although the statistical power of these subgroup analyses was low.
  • Potential explanations for the increase in distant recurrence noted in the radiation-first group are that chemotherapy was delayed for a median of 17 weeks after surgery, and that this group received lower chemotherapy dosages because of increased myelosuppression.
  • Two additional randomized trials, though not specifically designed to address the timing of radiation therapy and adjuvant chemotherapy, do add useful information.
  • In the NSABP-B-15 trial, patients who had undergone breast-conserving surgery received either one course of cyclophosphamide, methotrexate, and 5-FU (CMF) (n = 194) followed by radiation therapy followed by five additional cycles of CMF, or they received four cycles of doxorubicin and cyclophosphamide (AC) (n = 199) followed by radiation therapy.
  • [Level of evidence: 1iiA]
  • No differences in DFS, distant DFS, and OS were observed between these two arms.
  • The International Breast Cancer Study Group trials VI and VII also varied the timing of radiation therapy with CMF adjuvant chemotherapy and reported results similar to NSABP-B-15.
  • These studies showed that delaying radiation therapy for 2 to 7 months after surgery had no effect on the rate of local recurrence. These findings have been confirmed in a meta-analysis.

    [Level of evidence: 1iiA]

    In an unplanned analysis of patients treated on a phase III trial evaluating the benefit of adding trastuzumab in HER2/neu–positive breast cancer patients, there was no associated increase in acute adverse events or frequency of cardiac events in patients who received concurrent adjuvant radiation therapy and trastuzumab.

    Therefore, delivering radiation therapy concomitantly with trastuzumab appears to be safe and avoids additional delay in radiation therapy treatment initiation.

    Late toxic effects of radiation

    Late toxic effects of radiation therapy are uncommon and can be minimized with current radiation delivery techniques and with careful delineation of the target volume. Late effects of radiation include the following:

  • Radiation pneumonitis. In a retrospective analysis of 1,624 women treated with conservative surgery and adjuvant breast radiation at a single institution, the overall incidence of symptomatic radiation pneumonitis was 1.0% at a median follow-up of 77 months.
  • The incidence of pneumonitis increased to 3.0% with the use of a supraclavicular radiation field and to 8.8% when concurrent chemotherapy was administered. The incidence was only 1.3% in patients who received sequential chemotherapy.
  • [Level of evidence: 3iii]
  • Cardiac events. Controversy existed as to whether adjuvant radiation therapy to the left chest wall or breast, with or without inclusion of the regional lymphatics, was associated with increased cardiac mortality. In women treated with radiation therapy before 1980, an increased cardiac death rate was noted after 10 to 15 years, compared with women with nonradiated or right-side-only radiated breast cancer.
  • This was probably caused by the radiation received by the left myocardium.
  • Modern radiation therapy techniques introduced in the 1990s minimized deep radiation to the underlying myocardium when left-sided chest wall or left-breast radiation was used. Cardiac mortality decreased accordingly.

    An analysis of the National Cancer Institute’s Surveillance, Epidemiology, and End Results Program (SEER) data from 1973 to 1989 that reviewed deaths caused by ischemic heart disease in women who received breast or chest wall radiation showed that since 1980, no increased death rate resulting from ischemic heart disease in women who received left chest wall or breast radiation was found.

    [Level of evidence: 3iB]

  • Arm lymphedema. Lymphedema remains a major quality-of-life concern for breast cancer patients. Single-modality treatment of the axilla (surgery or radiation) is associated with a low incidence of arm edema. In patients who receive axillary dissection, adjuvant radiation therapy increases the risk of arm edema. Edema occurs in 2% to 10% of patients who receive axillary dissection alone compared with 13% to 18% of patients who receive axillary dissection and adjuvant radiation therapy.
  • (Refer to the PDQ summary on Lymphedema for more information.)
  • Brachial plexopathy. Radiation injury to the brachial plexus after adjuvant nodal radiation therapy is a rare clinical entity for breast cancer patients. In a single-institution study using current radiation techniques, 449 breast cancer patients treated with postoperative radiation therapy to the breast and regional lymphatics were monitored for 5.5 years to assess the rate of brachial plexus injury.
  • The diagnosis of such injury was made clinically with computerized tomography (CT) to distinguish radiation injury from tumor recurrence. When 54 Gy in 30 fractions was delivered to the regional nodes, the incidence of symptomatic brachial plexus injury was 1.0%, compared with 5.9% when increased fraction sizes (45 Gy in 15 fractions) were used.
  • Contralateral breast cancer. One report suggested an increase in contralateral breast cancer for women younger than 45 years who received chest wall radiation therapy after mastectomy.
  • No increased risk of contralateral breast cancer occurred in women aged 45 years and older who received radiation therapy.
  • Techniques to minimize the radiation dose to the contralateral breast are used to keep the absolute risk as low as possible.
  • Risk of second malignancy. The rate of second malignancy after adjuvant radiation therapy is very low. Sarcomas in the treated field are rare, with a long-term risk of 0.2% at 10 years.
  • In nonsmokers, the risk of lung cancer as a result of radiation exposure during treatment is minimal when current dosimetry techniques are used. Smokers, however, may have a small increased risk of lung cancer in the ipsilateral lung.
  • Postoperative Systemic Therapy

    Stage and molecular features determine the need for adjuvant systemic therapy and the choice of modalities used. For example, hormone receptor (ER and/or PR)–positive patients will receive hormone therapy. HER2 overexpression is an indication for using adjuvant trastuzumab, usually in combination with chemotherapy. When neither HER2 overexpression nor hormone receptors are present (i.e., triple-negative breast cancer), adjuvant therapy relies on chemotherapeutic regimens, which may be combined with investigational targeted approaches.

    An international consensus panel proposed a risk classification system and systemic therapy treatment options.

    This classification, with some modification, is described below:

    Table 11. Systemic Treatment for Early Breast Cancer by Subtype a
    Subtype Treatment Options Comments
    Luminal A–like
    – Hormone receptor–positiveEndocrine therapy alone in most casesConsider chemotherapy if:
    – HER2-negative– High tumor burden (≥4 LNs, T3 or higher)
    – PR >20%
    – Ki67 low– Grade 3
    Luminal B–like
    – Hormone receptor–positiveEndocrine therapy plus chemotherapy in most cases
    – HER2-negative
    – Either Ki67 high or PR low
    HER2-positive Chemotherapy plus anti-HER2 therapyUse endocrine therapy if also hormone receptor–positive
    May consider omitting chemotherapy plus anti-HER2 for small node-negative tumors
    Triple-negativeChemotherapyMay consider omitting chemotherapy for small node-negative tumors
    HER2 = human epidermal growth factor receptor 2; LN = lymph node; PR = progesterone receptor.
    aModified from Senkus et al.

    The selection of therapy is most appropriately based on knowledge of an individual’s risk of tumor recurrence balanced against the short-term and long-term risks of adjuvant treatment. This approach allows clinicians to help individuals determine if the gains anticipated from treatment are reasonable for their situation. The treatment options described below should be modified based on both patient and tumor characteristics.

    Table 12. Adjuvant Systemic Treatment Options for Women With Stages I, II, IIIA, and Operable IIIC Breast CancerChemotherapyAdjuvant chemotherapy 1970s to 2000: Anthracycline-based regimens versus cyclophosphamide, methotrexate, and 5-FU (CMF)
    Patient Group Treatment Options
    Premenopausal, hormone receptor–positive (ER or PR)No additional therapy
    Tamoxifen
    Tamoxifen plus chemotherapy
    Ovarian function suppression plus tamoxifen
    Ovarian function suppression plus aromatase inhibitor
    Premenopausal, hormone receptor–negative (ER or PR)No additional therapy
    Chemotherapy
    Postmenopausal, hormone receptor–positive (ER or PR)No additional therapy
    Upfront aromatase inhibitor therapy or tamoxifen followed by aromatase inhibitor with or without chemotherapy
    Postmenopausal, hormone receptor–negative (ER or PR)No additional therapy
    Chemotherapy
    ER = estrogen receptor; PR = progesterone receptor.

    Chemotherapy

    Adjuvant chemotherapy 1970s to 2000: Anthracycline-based regimens versus cyclophosphamide, methotrexate, and 5-FU (CMF)

    The EBCTCG meta-analysis analyzed 11 trials that began from 1976 to 1989 in which women were randomly assigned to receive regimens containing anthracyclines (e.g., doxorubicin or epirubicin) or CMF (cyclophosphamide, methotrexate, and 5-FU). The result of the overview analysis comparing CMF and anthracycline-containing regimens suggested a slight advantage for the anthracycline regimens in both premenopausal and postmenopausal women.

    Evidence (anthracycline-based regimens):

  • The EBCTCG overview analysis directly compared anthracycline-containing regimens (mostly 6 months of 5-FU, epirubicin, and cyclophosphamide [FEC] or fluorouracil, doxorubicin, and cyclophosphamide [FAC]) with CMF (either PO or intravenous [IV]) in approximately 14,000 women, 64% of whom were younger than 50 years.
  • Compared with CMF, anthracycline-based regimens were associated with a modest but statistically significant 11% proportional reduction in the annual risk of disease recurrence, and a 16% reduction in the annual risk of death. In each case, the absolute difference in outcomes between anthracycline-based and CMF-type chemotherapy was about 3% at 5 years and 4% at 10 years.
  • [Level of evidence: 1iiA]
  • Of note, few women older than 70 years were studied, and specific conclusions could not be reached for this age group.
  • Importantly, these data were derived from clinical trials in which patients were not selected for adjuvant therapy according to hormone-receptor status, and the trials were initiated before the advent of taxane-containing, dose-dense, or trastuzumab-based therapy.
  • As a result, the data may not reflect treatment outcomes based on evolving treatment patterns.
  • Study results suggest that tumor characteristics (i.e., node-positive breast cancer with HER2/neu overexpression) may predict anthracycline-responsiveness.

    Evidence (anthracycline-based regimen in women with HER2/neu amplification):

  • Data from retrospective analyses of randomized clinical trials suggest that, in patients with node-positive breast cancer, the benefit from standard-dose versus lower-dose adjuvant cyclophosphamide, doxorubicin, and 5-FU (CAF),
  • or the addition of doxorubicin to the adjuvant regimen,
  • is restricted to those patients whose tumors overexpress HER2/neu.[Level of evidence: 1iiA]
  • A retrospective analysis of the HER2/neu status of 710 premenopausal, node-positive women was undertaken to see the effects of adjuvant chemotherapy with CMF or cyclophosphamide, epirubicin, and 5-FU(CEF).
  • [Level of evidence: 2A] HER2/neu was measured using fluorescence in situ hybridization, polymerase chain reaction, and immunohistochemical methods.
  • The study confirmed previous data indicating that the amplification of HER2/neu was associated with a decrease in relapse-free survival (RFS) and OS.
  • In patients with HER2/neu amplification, the RFS and OS were increased by CEF.
  • In the absence of HER2/neu amplification, CEF and CMF were similar with regard to RFS (HR for relapse, 0.91; 95% CI, 0.71–1.18; P = .049) and OS (HRdeath, 1.06; 95% CI, 0.83–1.44; P = .68).
  • Similar results were seen in a meta-analysis that included 5,354 patients in whom HER2 status was known from eight randomized trials (including the one just described) comparing anthracycline-containing regimens with non–anthracycline-containing regimens.
  • Adjuvant chemotherapy 2000s to present: The role of adding taxanes to adjuvant therapy

    Several trials have addressed the benefit of adding a taxane (paclitaxel or docetaxel) to an anthracycline-based adjuvant chemotherapy regimen for women with node-positive breast cancer.

    Evidence (adding a taxane to an anthracycline-based regimen):

  • A literature-based meta-analysis of 13 studies demonstrated that the inclusion of a taxane improved both DFS and OS (DFS: HR, 0.83; 95% CI, 0.79–0.87; P < .001; OS: HR, 0.85; 95% CI, 0.79–0.91; P < .001).
  • [Level of evidence: 1iiA]
  • Five-year absolute survival differences were 5% for DFS and 3% for OS in favor of taxane-containing regimens.
  • There were no differences in benefit observed in patient subsets defined by nodal status, hormone-receptor status, or age and menopausal status. There was also no apparent difference in efficacy between the two agents. However, none of the studies that were reviewed involved a direct comparison between paclitaxel and docetaxel.
  • A U.S. intergroup study (CLB-9344 [NT00897026]) randomly assigned women with node-positive tumors to three dose levels of doxorubicin (60, 75, and 90 mg/m2) and a fixed dose of cyclophosphamide (600 mg/m2) every 3 weeks for four cycles. After AC (doxorubicin and cyclophosphamide) chemotherapy, patients were randomly assigned for a second time to receive paclitaxel (175 mg/m2) every 3 weeks for four cycles or no further therapy, and women with hormone receptor-positive tumors also received tamoxifen for 5 years.
  • [Level of evidence: 1iiA]
  • Although the dose-escalation of doxorubicin was not beneficial, the addition of paclitaxel resulted in statistically significant improvements in DFS (5%) and OS (3%).
  • The NSABP-B-28 (NCT01420185) trial randomly assigned 3,060 women with node-positive breast cancer to receive four cycles of postoperative AC or four cycles of AC followed by four cycles of paclitaxel. Women younger than 50 years with receptor-positive disease and all women older than 50 years received tamoxifen.
  • [Level of evidence: 1iiA]
  • DFS was significantly improved by the addition of paclitaxel (HR, 0.83; 95% CI, 0.72–0.96; P = .006; 5-year DFS, 76% vs. 72%).
  • The difference in OS was small (HR, 0.93), however, and not statistically significant (P = .46).
  • In the Breast Cancer International Research Group's trial (BCIRG-001), the FAC regimen was compared with the docetaxel plus doxorubicin and cyclophosphamide (TAC) regimen in 1,491 women with node-positive disease. Six cycles of either regimen were given as adjuvant postoperative therapy.
  • [Level of evidence: 1iiA]
  • There was a 75% DFS rate at 5 years in the TAC group compared with a 68% DFS rate in the FAC group (P = .001).
  • TAC was associated with a 30% overall lower risk of death (5% absolute difference) than was FAC (HR, 0.70; 98% CI, 0.53–0.91; P < .008).
  • Anemia, neutropenia, febrile neutropenia, and infections were more common in the TAC group. No deaths were associated with infections in either group. (Refer to the PDQ summary on Fatigue for information on anemia.)
  • An Eastern Cooperative Oncology Group–led intergroup trial (E1199 [NCT00004125]) involving 4,950 patients compared, in a factorial design, two schedules (weekly and every 3 weeks) of the two drugs (docetaxel vs. paclitaxel) after standard-dose AC chemotherapy given every 3 weeks.

    [Level of evidence: 1iiA] Study findings include the following:

  • There was no difference observed in the overall comparison with regard to DFS of docetaxel to paclitaxel (odds ratio [OR], 1.03; 95% CI, 0.91–1.16; P = .61) or between the 1-week and 3-week schedules (OR, 1.06; 95% CI, 0.94–1.20; P = .33).
  • There was a significant association between the drug administered and schedule for both DFS (0.003) and OS (0.01). Thus, compared with paclitaxel given every 3 weeks, paclitaxel given weekly improved both DFS (OR, 1.27; 95% CI, 1.01–1.57; P = .006) and OS (OR, 1.32; 95% CI, 1.02–1.72; P = .01).
  • Docetaxel given every 3 weeks was also superior in DFS to paclitaxel given every 3 weeks (OR, 1.23; 95% CI, 1.00–1.52; P = .02), but the difference was not statistically significant for OS (OR, 1.13; 95% CI, 0.88–1.46; P = .25).
  • Docetaxel given weekly was not superior to paclitaxel given every 3 weeks. There was no stated a priori basis for expecting that varying the schedule of administration would have opposite effects for the two drugs.
  • Chemotherapy schedule: Dose-density

    Historically, adjuvant chemotherapy for breast cancer was given on an every 3-week schedule. Studies sought to determine whether decreasing the duration between chemotherapy cycles could improve clinical outcomes. The overall results of these studies support the use of dose-dense chemotherapy for women with HER2-negative breast cancer.

    Evidence (administration of dose-dense chemotherapy in women with HER2-negative breast cancer):

  • A U.S. intergroup trial (CLB-9741 [NCT00003088]) of 2,005 node-positive patients compared, in a 2 × 2 factorial design, the use of concurrent AC followed by paclitaxel with sequential doxorubicin, paclitaxel, and cyclophosphamide given every 2 weeks with filgrastim or every 3 weeks.
  • [Level of evidence: 1iiA]
  • At a median follow-up of 68 months, dose-dense treatment improved DFS, the primary end point, in all patient populations (HR, 0.80; P = .018), but not OS (HR, 0.85; P = .12).
  • [Level of evidence: 1iiA]
  • There was no interaction between density and sequence.
  • Severe neutropenia was less frequent in patients who received the dose-dense regimens.
  • [Level of evidence: 1iiA]
  • An Italian trial (NCT00433420) compared two versus three weekly doses of epirubicin plus cyclophosphamide (with or without 5-FU) in a factorial design, with a result similar to a U.S. intergroup trial; however, this trial also demonstrated a difference in OS.
  • For the dose-density comparison, DFS at 5 years was 81% (95% CI, 79–84) in patients treated every 2 weeks and 76% (95% CI, 74–79) in patients treated every 3 weeks (HR, 0.77; 95% CI, 0.65–0.92; P = .004).
  • OS rates at 5 years were 94% (95% CI, 93–96) and 89% (95% CI, 87–91; HR, 0.65; 0.51–0.84; P = .001).
  • [Level of evidence: 1iiA]
  • A meta-analysis of dose-dense versus standard dosing included data from eight trials including 17,188 patients.
  • The patients who received dose-dense chemotherapy had better OS (HR, 0.86; 95% CI, 0.79–0.93; P = .0001) and DFS (HR, 0.84; 95% CI, 0.77–0.91; P < .0001) than those on the conventional schedule. A statistically significant OS benefit was observed in patients with ER-negative tumors (HR, 0.8; P = .002) but not in those with ER-positive breast cancer (HR, 0.93; 95% CI, 0.82–1.05; P = .25).
  • A meta-analysis of 26 randomized trials that included 37,298 women treated with anthracycline- and taxane-containing chemotherapy compared standard regimens (administered every 3–4 weeks) with more dose-intense regimens. Regimens that increased dose intensity by shortening the interval between cycles (i.e., dose-dense therapy or administration of the same dose over a shorter time period) and regimens that increased dose intensity by administering individual drugs in sequence to allow for higher doses (i.e., sequential scheduling).
  • Patients who received more dose-intense regimens had superior recurrence-free survival (28.0% vs. 31.4%; RR, 0.86; 95% CI, 0.82–0.89; P < .0001) and OS (18.9% vs. 21.3%; RR, 0.87; 95% CI, 0.83–0.92; P < .0001) at 10 years. The difference was present and statistically significant in receptor-positive and receptor-negative subgroups.
  • A randomized, phase III, double-blinded study (NCT01519700) demonstrated noninferiority for the duration of severe neutropenia of a biosimilar filgrastim, EP2006, compared with the U.S.-licensed product.
  • [Level of evidence: 1iDiv]
  • Docetaxel and cyclophosphamide

    Docetaxel and cyclophosphamide is an acceptable adjuvant chemotherapy regimen.

    Evidence (docetaxel and cyclophosphamide):

  • The regimen of docetaxel and cyclophosphamide (TC) compared with AC (doxorubicin and cyclophosphamide) was studied in 1,016 women with stage I or stage II invasive breast cancer. Patients were randomly assigned to receive four cycles of either TC or AC as adjuvant postoperative therapy.
  • [Level of evidence: 1iiA]
  • At 7 years, the DFS and OS demonstrated that four cycles of TC were superior to standard AC for both DFS and OS.
  • DFS was significantly superior for TC compared with AC (81% vs. 75%, HR, 0.74; 95% CI, 0.56–0.98; P = .033).
  • OS was significantly superior for TC compared with AC (87% vs. 82%, HR, 0.69; 95% CI, 0.50–0.97; P = .032).
  • Patients had fewer cardiac-related toxic effects with TC than with AC, but they had more myalgia, arthralgia, edema, and febrile neutropenia.
  • Timing of postoperative chemotherapy

    The optimal time to initiate adjuvant therapy is uncertain. A retrospective, observational study has reported the following:

  • A single-institution study of early-stage breast cancer patients diagnosed between 1997 and 2011 revealed that delays in initiation of adjuvant chemotherapy adversely affected survival outcomes.
  • [Level of evidence: 3iiiA]
  • Initiation of chemotherapy 61 days or more after surgery was associated with adverse outcomes among patients with stage II breast cancer (distant relapse-free survival: HR, 1.20; 95% CI, 1.02–1.43) and stage III breast cancer (OS: HR, 1.76; 95% CI, 1.26–2.46; RFS: HR, 1.34; 95% CI, 1.01–1.76; and distant relapse-free survival: HR, 1.36; 95% CI, 1.02–1.80).
  • Patients with triple-negative breast cancer (TNBC) tumors and those with HER2-positive tumors treated with trastuzumab who started chemotherapy 61 days or more after surgery had worse survival (TNBC: HR, 1.54; 95% CI, 1.09–2.18; HER2-positive: HR, 3.09; 95% CI, 1.49–6.39) than did those who initiated treatment in the first 30 days after surgery.
  • Because of the weaknesses and limitations of this study design, the optimal time to initiate adjuvant chemotherapy remains uncertain.
  • Toxic effects of chemotherapy

    Adjuvant chemotherapy is associated with several well-characterized toxic effects that vary according to the individual drugs used in each regimen. Common toxic effects include the following:

  • Nausea and vomiting.
  • Myelosuppression.
  • Alopecia.
  • Mucositis.
  • Less common, but serious, toxic effects include the following:

  • Heart failure (if an anthracycline is used).
  • Thromboembolic events.
  • Premature menopause.
  • Second malignancy (leukemia).
  • (Refer to the PDQ summary on Treatment-Related Nausea and Vomiting; for information on mucositis, refer to the PDQ summary on Oral Complications of Chemotherapy and Head/Neck Radiation; for information on symptoms associated with premature menopause, refer to the PDQ summary on Hot Flashes and Night Sweats.)

    The use of anthracycline-containing regimens, however—particularly those containing an increased dose of cyclophosphamide—has been associated with a cumulative risk of developing acute leukemia of 0.2% to 1.7% at 5 years.

    This risk increases to more than 4% in patients receiving high cumulative doses of both epirubicin (>720 mg/m2) and cyclophosphamide (>6,300 mg/m2).

    Cognitive impairment has been reported to occur after the administration of some chemotherapy regimens.

    However, data on this topic from prospective, randomized studies are lacking.

    The EBCTCG meta-analysis revealed that women who received adjuvant combination chemotherapy did have a 20% (standard deviation = 10) reduction in the annual odds of developing contralateral breast cancer.

    This small proportional reduction translated into an absolute benefit that was marginally statistically significant, but indicated that chemotherapy did not increase the risk of contralateral disease. In addition, the analysis showed no statistically significant increase in deaths attributed to other cancers or to vascular causes among all women randomly assigned to receive chemotherapy.

    HER2/neu–negative breast cancer

    For HER2/neu–negative breast cancer, there is no single adjuvant chemotherapy regimen that is considered standard or superior to another. Preferred regimen options vary by institution, geographic region, and clinician.

    Some of the most important data on the benefit of adjuvant chemotherapy came from the EBCTCG, which reviews data from global breast cancer trials every 5 years. In the 2011 EBCTCG meta-analysis, adjuvant chemotherapy using an anthracycline-based regimen compared with no treatment revealed significant improvement in the risk of recurrence (RR, 0.73; 95% CI, 0.68–0.79), significant reduction in breast cancer mortality (RR, 0.79; 95% CI, 0.72–0.85), and significant reduction in overall mortality (RR, 0.84; 95% CI, 0.78–0.91), which translated into an absolute survival gain of 5%.

    Triple-negative breast cancer (TNBC)

    TNBC is defined as the absence of staining for ER, PR, and HER2/neu. TNBC is insensitive to some of the most effective therapies available for breast cancer treatment including HER2-directed therapy such as trastuzumab and endocrine therapies such as tamoxifen or the aromatase inhibitors.

    Combination chemotherapy

    Combination cytotoxic chemotherapy administered in a dose-dense or metronomic schedule remains the standard therapy for early-stage TNBC.

    Evidence (neoadjuvant chemotherapy on a dose-dense or metronomic schedule for TNBC):

  • A prospective analysis studied 1,118 patients who received neoadjuvant chemotherapy at a single institution, of whom 255 (23%) had TNBC.
  • [Level of evidence: 3iiDiv]
  • The study observed that patients with TNBC had higher pathologic complete response (pCR) rates than did non-TNBC patients (22% vs. 11%; P = .034). Improved pCR rates may be important because in some studies, pCR is associated with improved long-term outcomes.
  • Platinum agents

    Platinum agents have emerged as drugs of interest for the treatment of TNBC. However, there is no established role for adding them to the treatment of early-stage TNBC outside of a clinical trial. One trial that treated 28 women with stage II or stage III TNBC with four cycles of neoadjuvant cisplatin resulted in a 22% pCR rate.

    [Level of evidence: 3iiiDiv] A randomized clinical trial, CALGB-40603 (NCT00861705), evaluated the benefit of carboplatin added to paclitaxel and doxorubicin plus cyclophosphamide chemotherapy in the neoadjuvant setting. The Triple Negative Trial (NCT00532727) is evaluating carboplatin versus docetaxel in the metastatic setting. These trials will help to define the role of platinum agents for the treatment of TNBC.

    Poly (ADP-ribose) polymerase (PARP) inhibitor agents

    The PARP inhibitors are being evaluated in clinical trials for patients with BRCA mutations and in TNBC.

    PARPs are a family of enzymes involved in multiple cellular processes, including DNA repair. Because TNBC shares multiple clinicopathologic features with BRCA-mutated breast cancers, which harbor dysfunctional DNA repair mechanisms, it is possible that PARP inhibition, in conjunction with the loss of DNA repair via BRCA-dependent mechanisms, would result in synthetic lethality and augmented cell death.

    HER2/neu–positive breast cancer

    Standard treatment for HER2-positive early breast cancer is 1 year of adjuvant trastuzumab therapy.

    Trastuzumab

    Several phase III clinical trials have addressed the role of the anti-HER2/neu antibody, trastuzumab, as adjuvant therapy for patients with HER2-overexpressing cancers. Study results confirm the benefit of 12 months of adjuvant trastuzumab therapy.

    Evidence (duration of trastuzumab therapy):

    The Herceptin Adjuvant (HERA) (BIG-01-01 [NCT00045032]) trial examined whether the administration of trastuzumab was effective as adjuvant treatment for HER2-positive breast cancer if used after completion of the primary treatment. For most patients, primary treatment consisted of an anthracycline-containing chemotherapy regimen given preoperatively or postoperatively, plus or minus locoregional radiation therapy. Trastuzumab was given every 3 weeks starting within 7 weeks of the completion of primary treatment.

    [Level of evidence: 1iiA] Patients were randomly assigned to one of three study arms:

  • Observation (n = 1,693).
  • 1 year of trastuzumab (n = 1,694).
  • 2 years of trastuzumab (n = 1,694).
  • Of the patients in the comparison of 1 year of trastuzumab versus observation group, the median age was 49 years, about 33% had node-negative disease, and nearly 50% had hormone receptor (ER and PR)–negative disease.

  • One year of trastuzumab versus observation:
  • After a median follow-up of 11 years,
  • the finding was that 1 year of trastuzumab improved DFS (HR, 0.76; 95% CI, 0.68–0.86; 10-year DFS, 72% vs. 66%; P < .0001), despite a crossover of 52% of the patients on observation.
  • One year of trastuzumab also improved OS (HR, 0.74; 95% CI, 0.64–0.86; 12-year OS, 79% vs. 73%; P < .0001).
  • [Level of evidence: 1iiA]
  • One year versus 2 years of trastuzumab:
  • After a median follow-up of 11 years, there was no benefit to an additional year of trastuzumab for DFS (HR, 1.02; 95% CI, 0.89–1.17).
  • Symptomatic cardiac events occurred in 1% of the patients on trastuzumab and in 0.1% of the observation group.
  • In the combined analysis of the NSABP-B-31 (NCT00004067) and intergroup NCCTG-N9831 (NCT00005970) trials, trastuzumab was given weekly, concurrently, or immediately after the paclitaxel component of the AC with paclitaxel regimen.
  • [Level of evidence: 1iiA]
  • The HERA results were confirmed in a joint analysis of the two studies, with a combined enrollment of 3,676 patients. A highly statistically significant improvement in DFS (HR, 0.48; P < .001; 3-year DFS, 87% vs. 75%) was observed, as was a significant improvement in OS (HR, 0.67; P = .015; 3-year OS, 94.3% in the trastuzumab group vs. 91.7% in the control group; 4-year OS, 91.4% in the trastuzumab group vs. 86.6% in the control group).
  • Patients treated with trastuzumab experienced a longer DFS, with a 52% lower risk of a DFS event (HR, 0.48; 95% CI, 0.39–0.59; P < .001), corresponding to an absolute difference in DFS of 11.8% at 3 years and 18% at 4 years. The risk of distant recurrence in patients treated with trastuzumab was 53% lower (HR, 0.47; 95% CI, 0.37–0.61; P < .001), and the risk of death was 33% lower (HR, 0.67; 95% CI, 0.48–0.93; P = .015).
  • In an updated analysis with a median follow-up of 8.4 years, the addition of trastuzumab to chemotherapy led to a 37% relative improvement in OS (HR, 0.63; 95% CI, 0.54–0.73; P < .001) and an increase in the 10-year OS rate from 75.2% to 84%.
  • In the BCIRG-006 (NCT00021255) trial, 3,222 women with early-stage HER2-overexpressing breast cancer were randomly assigned to receive AC followed by docetaxel (AC-T), AC followed by docetaxel plus trastuzumab (AC-T plus trastuzumab), or docetaxel, carboplatin, plus trastuzumab (TCH, a non–anthracycline-containing regimen).
  • [Level of Evidence: 1iiA]
  • A significant DFS and OS benefit was seen in both groups treated with trastuzumab compared with the control group that did not receive trastuzumab.
  • For patients receiving AC-T plus trastuzumab, the 5-year DFS rate was 84% (HR for the comparison with AC-T, 0.64; P < .001), and the OS rate was 92% (HR, 0.63; P < .001). For patients receiving TCH, the 5-year DFS rate was 81% (HR, 0.75; P = .04), and the OS rate was 91% (HR, 0.77; P = .04). The control group had a 5-year DFS rate of 75% and an OS rate of 87%.
  • The authors stated that there was no significant difference in DFS or OS between the two trastuzumab-containing regimens. However, the study was not powered to detect equivalence between the two trastuzumab-containing regimens.
  • The rates of congestive heart failure (CHF) and cardiac dysfunction were significantly higher in the group receiving AC-T plus trastuzumab than in the TCH group (P < .001).
  • These trial findings raise the question of whether anthracyclines are needed for the adjuvant treatment of HER2-overexpressing breast cancer. The group receiving AC-trastuzumab showed a small but not statistically significant benefit over TCH.
  • This trial supports the use of TCH as an alternative adjuvant regimen for women with early-stage HER2-overexpressing breast cancer, particularly in those with concerns about cardiac toxic effects.
  • The Finland Herceptin (FINHER) study assessed the impact of a much shorter course of trastuzumab. In this trial, 232 women younger than 67 years with node-positive or high-risk (>2 cm tumor size) node-negative HER2-overexpressing breast cancer were given nine weekly infusions of trastuzumab concurrently with docetaxel or vinorelbine followed by FEC.
  • [Level of evidence: 1iiA]
  • At a 3-year median follow-up, the risk of recurrence and/or death was significantly reduced in patients receiving trastuzumab (HR, 0.41; P = .01; 95% CI, 0.21–0.83; 3-year DFS, 89% vs. 78%).
  • The difference in OS (HR, 0.41) was not statistically significant (P = .07; 95% CI, 0.16–1.08).
  • Several studies have compared 6 months of trastuzumab administration to 12 months.
  • In an interim analysis of the PHARE (NCT00381901) trial, the 2-year DFS rate was 93.8% (95% CI, 92.6–94.9) in the 12-month group and 91.1% (89.7–92.4) in the 6-month group (HR, 1.28; 95% CI, 1.05–1.56; noninferiority, P = .29).
  • [Level of evidence: 1iiA]
  • In the final analysis, after 704 events were observed, the adjusted HR was 1.08 (95% CI, 0.93–1.25), and the prespecified noninferiority HR of 1.15 was not excluded.
  • Similar results were noted in a much smaller study of 481 patients led by the Hellenic Oncology Research Group.
  • [Level of evidence: 1iiA]
  • In contrast, the PERSEPHONE (NCT00712140) trial, which enrolled 4,088 patients who experienced 512 DFS events at the time of analysis, excluded its prespecified noninferiority margin (HR, 1.07; 90% CI, 0.93−1.24; noninferiority, P = .011).
  • [Level of evidence: 1iiA]
  • Several studies have evaluated the use of subcutaneous (SQ) trastuzumab in the neoadjuvant and adjuvant settings.

    Cardiac toxic effects with adjuvant trastuzumab

    Cardiac events associated with adjuvant trastuzumab have been reported in multiple studies. Key study results include the following:

  • In the HERA (BIG-01-01) trial, severe CHF (New York Heart Association class III–IV) occurred in 0.6% of patients treated with trastuzumab.
  • Symptomatic CHF occurred in 1.7% of patients in the trastuzumab arm and 0.06% of patients in the observation arm.
  • In the NSABP B-31 (NCT00004067) trial, 31 of 850 patients in the trastuzumab arm had confirmed symptomatic cardiac events, compared with 5 of 814 patients in the control arm.
  • The 3-year cumulative incidence of cardiac events for trastuzumab-treated patients was 4.1%, compared with 0.8% of patients in the control arm (95% CI, 1.7%–4.9%).
  • In the NCCTG-N9831 trial, 39 cardiac events were reported in the three arms over a 3-year period. The 3-year cumulative incidence of cardiac events was 0.35% in arm A (no trastuzumab), 3.5% in arm B (trastuzumab after paclitaxel), and 2.5% in arm C, (trastuzumab concomitant with paclitaxel).
  • In the AVENTIS-TAX-GMA-302 (BCIRG 006) (NCT00021255) trial, clinically symptomatic cardiac events were detected in 0.38% of patients in the AC/docetaxel (AC-D) arm, 1.87% of patients in the AC/docetaxel/trastuzumab (AC-DH) arm, and 0.37% of patients in the docetaxel/carboplatin/trastuzumab (DCbH) arm.
  • There was also a statistically significant higher incidence of asymptomatic and persistent decrease in left ventricular ejection fraction (LVEF) in the AC-DH arm than with either the AC-D or DCbH arms.
  • In the FINHER trial, none of the patients who received trastuzumab experienced clinically significant cardiac events. LVEF was preserved in all of the women receiving trastuzumab, but the number of patients receiving adjuvant trastuzumab was very low.
  • Lapatinib

    Lapatinib is a small-molecule tyrosine kinase inhibitor that is capable of dual-receptor inhibition of both epidermal growth factor receptor and HER2. There are no data supporting the use of lapatinib as part of adjuvant treatment of early-stage HER2/neu–positive breast cancer.

    Evidence (against the use of lapatinib for HER2-positive early breast cancer):

  • In the Adjuvant Lapatinib and/or Trastuzumab Treatment Optimization trial (ALTTO [NCT00553358]), the role of lapatinib (in combination with, in sequence to, in comparison with, or as an alternative to trastuzumab) in the adjuvant setting was investigated.
  • [Level of evidence: 1iiA]
  • In the primary analysis, at the median follow-up of 4.5 years (range, 1 day–6.4 years), a 16% reduction in the HR for DFS was observed in the lapatinib-plus-trastuzumab arm, compared with the trastuzumab-alone arm (555 DFS events; HR, 0.84; 97.5% CI, 0.70–1.02; P = .048), which was not statistically significant at the .025 significance level.
  • The HR for DFS for the superiority comparison of trastuzumab to lapatinib versus trastuzumab alone in the intention-to-treat population was 0.96 (97.5% CI, 0.80–1.15; P = .61).
  • The 4-year OS was 95% for the lapatinib-plus-trastuzumab arm, 95% for the trastuzumab-to-lapatinib arm, and 94% for the trastuzumab-alone arm. The HR for OS was 0.80 (95% CI, 0.62–1.03; P = .078) for the comparison of lapatinib plus trastuzumab versus trastuzumab alone and 0.91 (95% CI, 0.71–1.16; P = .433) for the comparison of trastuzumab to lapatinib versus trastuzumab alone.
  • The lapatinib-versus-trastuzumab component of the study was closed because, at interim analysis, the HR for DFS was 1.52 in favor of trastuzumab alone and noninferiority was excluded.
  • Combination therapy with lapatinib and trastuzumab also resulted in worsened grade 3 diarrhea (15% vs. 1%), grade 3 rash (5% vs. 1%), and grade 3 hepatobiliary adverse events (3% vs. 1%) compared with trastuzumab alone.
  • Pertuzumab

    Pertuzumab is a humanized monoclonal antibody that binds to a distinct epitope on the extracellular domain of the HER2 receptor and inhibits dimerization. Its use, in combination with trastuzumab, has been evaluated in a randomized trial in the postoperative setting.

    Evidence (pertuzumab):

  • The Breast Intergroup (BIG) trial enrolled 4,805 women with HER2-positive cancer cells in a blinded comparison study for 12 months of trastuzumab plus placebo versus 12 months of trastuzumab plus pertuzumab, which were given in conjunction with standard chemotherapy and hormone therapy.
  • At the time of the final analysis of the primary endpoint (breast cancer, RFS), there was a significant difference in favor of the combination regimen (HR, 0.81; 95% CI, 0.66–1.00; P = .045; 3-year invasive DFS, 94.1% vs. 93.2%).
  • There was no statistically significant difference in OS at the first interim analysis for this endpoint.
  • Patients receiving pertuzumab had more grade 3 diarrhea (9.8% vs. 3.7%) and were more likely to develop heart failure (0.6% vs. 0.2%).
  • Neratinib

    Neratinib is an irreversible tyrosine kinase inhibitor of HER1, HER2, and HER4, which has been approved by the FDA for the extended adjuvant treatment of patients with early-stage HER2-positive breast cancer, to follow adjuvant trastuzumab-based therapy.

    Evidence (Neratinib):

  • In the ExteNET (NCT00878709) trial, the safety and efficacy of 12 months of adjuvant neratinib was investigated in patients with early-stage HER2-positive breast cancer (n = 2,840) who had completed neoadjuvant trastuzumab up to 2 years before randomization. Patients received neratinib 240 mg oral daily for 1 year or a placebo.
  • [Level of evidence: 1iiA]
  • The primary endpoint was invasive DFS.
  • After a median follow-up of 5.2 years (interquartile range, 2.1–5.3), patients in the neratinib group had significantly fewer invasive DFS events than those in the placebo group (neratinib group, 116 events vs. placebo group, 163 events; stratified HR, 0.73; 95% CI, 0.57–0.92; P = .0083). The 5-year invasive DFS was 90.2% (95% CI, 88.3–91.8) in the neratinib group and 87.7% (85.7–89.4) in the placebo group.
  • OS data are not mature.
  • The most common grade 1 to 2 adverse events included diarrhea (neratinib, 55% vs. placebo, 34%), nausea (41% vs. 21%), fatigue (25% vs. 20%), vomiting (23% vs. 8%), and abdominal pain (22% vs. 10%). Prophylactic loperamide is recommended on the FDA label during the first 56 days of therapy, and as needed thereafter to help manage diarrhea.
  • The most common grade 3 to 4 adverse event was diarrhea (neratinib, 40% vs. placebo, 2%). All other grade 3 to 4 adverse events occurred in 2% or less of patients.
  • Hormone receptor–positive breast cancer

    Much of the evidence presented in the following sections on therapy for women with hormone receptor–positive disease has been considered in an American Society of Clinical Oncology guideline that describes several options for the management of these patients.

    Five years of adjuvant endocrine therapy has been shown to substantially reduce the risks of locoregional and distant recurrence, contralateral breast cancer, and death from breast cancer.

    The optimal duration of endocrine therapy is unclear, with the preponderance of evidence supporting at least 5 years of endocrine therapy. A meta-analysis of 88 clinical trials involving 62,923 women with hormone receptor–positive breast cancer who were disease free after 5 years of endocrine therapy showed a steady risk of late recurrence 5 to 20 years after diagnosis.

    [Level of evidence: 3iiiD] The risk of distant recurrence correlated with the original tumor (T) and node (N) status, with risks ranging from 10% to 41%.

    Tamoxifen

    Tamoxifen has been shown to be of benefit to women with hormone receptor–positive breast cancer.

    Evidence (tamoxifen for hormone receptor–positive early breast cancer):

  • The EBCTCG performed a meta-analysis of systemic treatment of early breast cancer by hormone, cytotoxic, or biologic therapy methods in randomized trials involving 144,939 women with stage I or stage II breast cancer. An analysis published in 2005 included information on 80,273 women in 71 trials of adjuvant tamoxifen.
  • [Level of evidence: 1iiA]
  • In this analysis, the benefit of tamoxifen was found to be restricted to women with hormone receptor–positive or hormone receptor–unknown breast tumors. In these women, the 15-year absolute reduction associated with 5 years of use was 12% for recurrence and 9% for mortality.
  • Allocation to approximately 5 years of adjuvant tamoxifen reduces the annual breast cancer death rate by 31%, largely irrespective of the use of chemotherapy and of age (<50 years, 50–69 years, ≥70 years), PR status, or other tumor characteristics.
  • The meta-analysis also confirmed the benefit of adjuvant tamoxifen in hormone receptor–positive premenopausal women. Women younger than 50 years obtained a degree of benefit from 5 years of tamoxifen similar to that obtained by older women. In addition, the proportional reductions in both recurrence and mortality associated with tamoxifen use were similar in women with either node-negative or node-positive breast cancer, but the absolute improvement in survival at 10 years was greater in the node-positive breast cancer group (5.3% vs. 12.5% with 5 years of use).
  • Similar results were found in the IBCSG-13-93 trial.
  • Of 1,246 women with stage II disease, only the women with hormone receptor–positive disease benefited from tamoxifen.
  • The optimal duration of tamoxifen use has been addressed by the EBCTCG meta-analysis and by several large randomized trials.

    Ten years of tamoxifen therapy has been shown to be superior to shorter durations of tamoxifen therapy.

    Evidence (duration of tamoxifen therapy):

  • The EBCTCG meta-analysis demonstrated that 5 years of tamoxifen was superior to shorter durations. The following results were reported:
  • A highly significant advantage of 5 years versus 1 to 2 years of tamoxifen with respect to the risk of recurrence (proportionate reduction, 15.2%; P <.001) and a less significant advantage with respect to mortality (proportionate reduction, 7.9%; P = .01) was observed.
  • Long-term follow-up of the Adjuvant Tamoxifen Longer Against Shorter (ATLAS [NCT00003016]) trial demonstrated that 10 years of tamoxifen therapy was superior to 5 years of tamoxifen therapy. Between 1996 and 2005, 12,894 women with early breast cancer were randomly assigned to receive 10 years or 5 years of tamoxifen therapy. The following results were reported:
  • [Level of Evidence: 1iiA]
  • Study results revealed that 10 years of tamoxifen reduced the risk of breast cancer recurrence (617 recurrences for 10 years of tamoxifen vs. 711 recurrences for 5 years of tamoxifen; P = .002), reduced breast-cancer mortality (331 deaths for 10 years of tamoxifen vs. 397 deaths for 5 years of tamoxifen; P = .01), and reduced overall mortality (639 deaths for 10 years of tamoxifen vs. 722 deaths for 5 years of tamoxifen; P = .01).
  • Of note, from the time of the original breast cancer diagnosis, the benefits of 10 years of therapy were less extreme before than after year 10. At 15 years from the time of diagnosis, breast cancer mortality was 15% at 10 years and 12.2% at 5 years.
  • Compared with 5 years, 10 years of tamoxifen therapy increased the risk of the following:
  • Pulmonary embolus RR, 1.87; (95% CI, 1.13–3.07; P = .01).
  • Stroke RR, 1.06; (95% CI, 0.83–1.36).
  • Ischemic heart disease RR, 0.76; (95% CI, 0.6–0.95; P = .02).
  • Endometrial cancer RR, 1.74; (95% CI, 1.30–2.34; P = .0002). Notably, the cumulative risk of endometrial cancer during years 5 to 14 from breast cancer diagnosis was 3.1% for women who received 10 years of tamoxifen versus 1.6% for women who received 5 years of tamoxifen. The mortality for years 5 to 14 was 12.2 versus 15 for an absolute mortality reduction of 2.8%.
  • The results of the ATLAS trial indicated that for women who remained premenopausal after 5 years of adjuvant tamoxifen, continued tamoxifen for 5 more years was beneficial.

    Women who have become menopausal after 5 years of tamoxifen may also be treated with AIs. (Refer to the Aromatase inhibitors section in the Hormone receptor–positive therapy section of this summary for more information.)

    Tamoxifen and chemotherapy

    Because of the results of an EBCTCG analysis, the use of tamoxifen in women who received adjuvant chemotherapy does not attenuate the benefit of chemotherapy.

    However, concurrent use of tamoxifen with chemotherapy is less effective than sequential administration.

    Ovarian ablation, tamoxifen, and chemotherapy

    Evidence suggests ovarian ablation alone is not an effective substitute for other systemic therapies.

    Further, the addition of ovarian ablation to chemotherapy and/or tamoxifen has not been found to significantly improve outcomes.

    Evidence (tamoxifen plus ovarian suppression):

  • The largest study (SOFT [NCT00066690]) to examine the addition of ovarian ablation to tamoxifen with or without chemotherapy randomly assigned 2,033 premenopausal women (53% of whom had received previous chemotherapy) to receive tamoxifen or tamoxifen plus ovarian suppression with triptorelin or ablation with surgery or radiation therapy.
  • [Level of evidence: 1iiDii]
  • Upon initial report, with a median follow-up of 5.6 years, there was no significant difference in the primary outcome of DFS (HR, 0.83; 95% CI, 0.66–1.04; P = .10); 5-year DFS was 86% in the tamoxifen-plus-ovarian-suppression group versus 84.7% in the tamoxifen-alone group. However, updated results with a median follow-up of 8 years, demonstrated improved DFS with tamoxifen plus ovarian suppression compared with tamoxifen alone (HR, 0.76; 95% CI, 0.62–0.93, P = .009); the 8-year DFS was 83.2% in the tamoxifen-plus-ovarian-suppression group versus 78.9% in the tamoxifen-alone group. In addition, OS at 8 years was improved with tamoxifen plus ovarian suppression compared with tamoxifen alone (HR, 0.67; 95% CI, 0.48–0.92; P = .01); 8-year OS was 93.3% in the tamoxifen-plus-ovarian-suppression group versus 91.5% in the tamoxifen-alone group.
  • Despite overall negative initial results, subgroup analysis suggested a benefit with ovarian suppression in women who underwent chemotherapy and remained premenopausal afterwards. Follow-up results at 8 years, however, did not demonstrate heterogeneity of treatment effect according to whether chemotherapy was administered, although recurrences were more frequent among patients who received chemotherapy.

    Aromatase inhibitors (AIs)

    Premenopausal women

    AIs have been compared with tamoxifen in premenopausal women in whom ovarian function was suppressed or ablated. The results of these studies have been conflicting.

    Evidence (comparison of an AI with tamoxifen in premenopausal women):

  • In one study (NCT00295646), 1,803 women who received goserelin were randomly assigned to a 2 × 2 factorial design trial that compared anastrozole and tamoxifen, with or without zoledronic acid.
  • At a median follow-up of 62 months, there was no difference in DFS (HR, 1.08; 95% CI, 0.81–1.44; P = .59).
  • OS was superior with tamoxifen (HR, 1.75; 95% CI, 1.08–2.83; P = .02).
  • In two unblinded studies that were analyzed together (TEXT [NCT00066703] and SOFT [NCT00066690]), exemestane was also compared with tamoxifen in 4,690 premenopausal women who underwent ovarian ablation.
  • The use of exemestane resulted in a significant difference in DFS (HR, 0.77; 95% CI, 0.67–0.90; P < .001; 8-year DFS, 86.8% in the exemestane-ovarian suppression group vs. 82.8% in the tamoxifen-ovarian-suppression group).
  • [Level of evidence: 1iDii]
  • The 8-year rate of freedom from distant recurrence was also higher in the exemestane-ovarian-suppression group (HR, 0.80; 95% CI, 0.66–0.96; P = .02); 8-year rate of freedom from distant recurrence was 91.8% in the exemestane-ovarian-suppression group versus 89.7% in the tamoxifen-ovarian-suppression group.
  • Despite improvements in DFS and freedom from distant recurrence, no difference in OS was observed with the use of exemestane in combination with ovarian suppression compared with tamoxifen in combination with ovarian suppression (HR, 0.98; 95% CI, 0.79–1.22; P = .84; 8-year OS, 93.4% in the exemestane-ovarian suppression group vs. 93.3% in the tamoxifen-ovarian-suppression group).
  • [Level of evidence: 1iiA]
  • A follow-up report on the differences in QOL for the exemestane-ovarian-suppression group versus the tamoxifen-ovarian-suppression group observed the following (the differences cited below were all significant at P < .001 and occurred in patients who did and did not receive chemotherapy):
  • Patients who received tamoxifen plus ovarian function suppression were more affected by hot flushes and sweats over 5 years than were those who received exemestane plus ovarian function suppression, although these symptoms improved.
  • Patients who received exemestane plus ovarian function suppression reported more vaginal dryness, greater loss of sexual interest, and difficulties becoming aroused than did patients who received tamoxifen plus ovarian function suppression; these differences persisted over time.
  • An increase in bone or joint pain was more pronounced, particularly in the short term, in patients who received exemestane plus ovarian function suppression than in patients who received tamoxifen plus ovarian function suppression.
  • Changes in global QOL indicators from baseline were small and similar between treatments over the 5 years.
  • [Level of evidence: 1iC]
  • Postmenopausal women

    In postmenopausal women, the use of AIs in sequence with or as a substitute for tamoxifen has been the subject of multiple studies, the results of which have been summarized in an individual patient-level meta-analysis.

    Initial therapy

    Evidence (AI vs. tamoxifen as initial therapy in postmenopausal women):

  • A large, randomized trial of 9,366 patients compared the use of the AI anastrozole and the combination of anastrozole and tamoxifen with tamoxifen alone as adjuvant therapy for postmenopausal patients with lymph node-negative or lymph node-positive disease. Most (84%) of the patients in the study were hormone receptor-positive. Slightly more than 20% had received chemotherapy.
  • ;
  • [Level of evidence: 1iDii]
  • With a median follow-up of 33.3 months, no benefit in DFS was observed for the combination arm relative to tamoxifen alone.
  • Patients on anastrozole, however, had a significantly longer DFS (HR, 0.83) than those on tamoxifen. In an analysis conducted after a median follow-up of 100 months among hormone receptor-positive patients, DFS was significantly (P = .003) longer in patients on anastrozole (HR, 0.85; 95% CI, 0.76–0.94), but OS was not improved (HR, 0.97; 95% CI, 0.86–1.11; P = .7).
  • Patients on tamoxifen more frequently developed endometrial cancer and cerebrovascular accidents, whereas patients on anastrozole had more fracture episodes. The frequency of myocardial infarction was similar in both groups. Except for a continued increased frequency of endometrial cancer in the tamoxifen group, these differences did not persist in the posttreatment period.
  • A large, double-blinded, randomized trial of 8,010 postmenopausal women with hormone receptor-positive breast cancer compared the use of letrozole with tamoxifen given continuously for 5 years or with crossover to the alternate drug at 2 years.
  • An updated analysis from the International Breast Cancer Study Group (IBCSG-1-98 [NCT00004205]) reported results on the 4,922 women who received tamoxifen or letrozole for 5 years at a median follow-up of 51 months.
  • [Level of evidence: 1iDii]
  • DFS was significantly superior in patients treated with letrozole (HR, 0.82; 95% CI, 0.71–0.95; P = .007; 5-year DFS, 84.0% vs. 81.1%).
  • OS was not significantly different in patients treated with letrozole (HR, 0.91; 95% CI, 0.75–1.11; P = .35).
  • In the meta-analysis, which included 9,885 women from multiple trials, the 10-year recurrence risk was 19.1% in the AI group versus 22.7% in the tamoxifen group (RR, 0.80; 95% CI, 0.73–0.88; P < .001). The overall 10-year mortality rate was also reduced from 24.0% to 21.3%. (RR, 0.89; 95% CI, 0.8–0.97; P = .01).
  • [Level of evidence: 1A]
  • Sequential tamoxifen and AI versus 5 years of tamoxifen

    Several trials and meta-analyses have examined the effect of switching to anastrozole or exemestane to complete a total of 5 years of therapy after 2 to 3 years of tamoxifen.

    The evidence, as described below, indicates that sequential tamoxifen and AI is superior to remaining on tamoxifen for 5 years.

    Evidence (sequential tamoxifen and AI vs. 5 years of tamoxifen):

  • Two trials carried out in sequence by the same group enrolled a total of 828 patients and were reported together; one trial used aminoglutethimide as the AI, and the other trial used anastrozole. After a median follow-up of 78 months, an improvement in all-cause mortality (HR, 0.61; 95% CI, 0.42–0.88; P = .007) was observed in the AI groups.
  • [Level of evidence: 1iiA]
  • Two other trials were reported together.
  • A total of 3,224 patients were randomly assigned after 2 years of tamoxifen to continue tamoxifen for a total of 5 years or to take anastrozole for 3 years. There was a significant difference in event-free survival (EFS) (HR, 0.80; 95% CI, P = .0009), but not in OS (5-year OS, 97% CI for the switched arm vs. 96% CI for the tamoxifen-alone arm; P = .16).
  • [Level of evidence: 1iDii]
  • A large, double-blinded, randomized trial (EORTC-10967 [ICCG-96OEXE031-C1396-BIG9702]) (NCT00003418) of 4,742 patients compared continuing tamoxifen with switching to exemestane for a total of 5 years of therapy in women who had received 2 to 3 years of tamoxifen.
  • [Level of evidence: 1iDii]
  • After the second planned interim analysis, when median follow-up for patients on the study was 30.6 months, the results were released because of a highly significant (P < .005) difference in DFS (HR, 0.68) favoring the exemestane arm.
  • After a median follow-up of 55.7 months, the HR for DFS was 0.76 (95% CI, 0.66–0.88; P = .001) in favor of exemestane.
  • [Level of evidence: 1iA]
  • At 2.5 years after random assignment, 3.3% fewer patients on exemestane had developed a DFS event (95% CI, 1.6–4.9). The HR for OS was 0.85 (95% CI, 0.7–1.02; P = .08).
  • In the meta-analysis, which included 11,798 patients from six trials, the 10-year recurrence rate was reduced from 19% to 17% in the AI-containing groups (RR, 0.82; 95% CI, 0.75–0.91; P = .0001). The overall 10-year mortality was 17.5% in the tamoxifen group and 14.6% in the AI-containing group (RR, 0.82; 95% CI, 0.73–0.91; P = .0002).

    [Level of evidence: 1A]

    Sequential tamoxifen and AI for 5 years versus 5 years of an AI

    The evidence indicates that there is no benefit to the sequential use of tamoxifen and an AI for 5 years over 5 years of an AI.

    Evidence (sequential use of tamoxifen and an AI vs. 5 years of an AI):

  • A large, randomized trial of 9,779 patients compared DFS of postmenopausal women with hormone receptor–positive breast cancer between initial treatment with sequential tamoxifen for 2.5 to 3 years followed by exemestane for a total of 5 years versus exemestane alone for 5 years. The primary endpoints were DFS at 2.75 years and 5.0 years.
  • [Level of evidence: 1iDii]
  • Five-year DFS was 85% in the sequential group and 86% in the exemestane-alone group (HR, 0.97; 95% CI, 0.88–1.08; P = .60).
  • Similarly in the IBCSG 1-98 (NCT00004205) trial, two sequential arms were compared with 5 years of letrozole.
  • [Level of evidence: 1iDii]
  • There was no difference in DFS when the two sequential arms were compared with 5 years of letrozole (letrozole to tamoxifen HR, 1.06; 95% CI, 0.91–1.23; P = .45 and tamoxifen to letrozole HR, 1.07; 95% CI, 0.92–1.25; P = .36).
  • The FATA-GIM3 (NCT00541086) trial, which was not included in the meta-analysis, compared 2 years of tamoxifen followed by 3 years of one of the three AIs with 5 years of an AI. No significant difference in 5-year DFS was found between the two approaches (88.5% for switching; 89.8% for upfront AI; HR, 0.89; 95% CI, 0.73–1.08; P = .23).
  • In the meta-analysis, which included 12,779 patients from the trials, the 7-year recurrence rate was slightly reduced from 14.5% to 13.8% in the groups that received 5 years of an AI (RR, 0.90; 95% CI, 0.81–0.99; P = .045). Overall mortality at 7 years was 9.3% in the tamoxifen-followed-by-AI groups and 8.2% in the AI-alone groups (RR, 0.89; 95% CI, 0.78–1.03; P = .11).

    [Level of evidence: 1A]

    One AI versus another for 5 years

  • The mild androgen activity of exemestane prompted a randomized trial that evaluated whether exemestane might be preferable to anastrozole, in terms of its efficacy (i.e., EFS) and toxicity, as upfront therapy for postmenopausal women diagnosed with hormone receptor-positive breast cancer.
  • [Level of evidence: 1iiA] The MA27 (NCT00066573) trial randomly assigned 7,576 postmenopausal women to receive 5 years of anastrozole or exemestane.
  • At a median follow-up of 4.1 years, no difference in efficacy was seen (HR, 1.02; 95% CI, 0.87–1.18; P = .86).
  • [Level of evidence: 1iiD]
  • The two therapies also were not significantly different in terms of impact on bone mineral density or fracture rates.
  • [Level of evidence: 1iiD]
  • In the Femara Versus Anastrozole Clinical Evaluation (FACE [NCT00248170]) study, 4,136 patients with hormone receptor-positive disease were randomly assigned to receive either letrozole or anastrozole.
  • There was no significant difference in DFS (HR, 0.93; 95% CI, 0.80–1.07; P = .3150) at the time of a final analysis that was conducted when there were 709 of the planned 959 events.
  • There were no substantial differences in adverse events between the arms.
  • In the FATA-GIM3 trial, 3,697 patients with HR-positive disease were randomly assigned among the three AIs either for 5 years or after 2 years of tamoxifen. No significant difference in 5-year DFS (90.0% for anastrozole, 88.0% for exemestane, and 89.4% for letrozole; P = .24) was noted among the three AIs.
  • Switching to an AI after 5 years of tamoxifen

    The evidence, as described below, indicates that switching to an AI after 5 years of tamoxifen is superior to stopping tamoxifen at that time.

  • A large, double-blinded, randomized trial (CAN-NCIC-MA17 [NCT00003140]) of 5,187 patients compared the use of letrozole versus placebo in receptor-positive postmenopausal women who received tamoxifen for approximately 5 years (range, 4.5–6.0) years.
  • [Level of evidence: 1iDii]
  • After the first planned interim analysis, when median follow-up for patients in the study was 2.4 years, the results were unblinded because of a highly significant (P < .008) difference in DFS (HR, 0.57), favoring the letrozole arm.
  • After 3 years of follow-up, 4.8% of the women on the letrozole arm had developed recurrent disease or new primaries versus 9.8% on the placebo arm (95% CI for the difference, 2.7%–7.3%). Because of the early unblinding of the study, longer-term comparative data on the risks and benefits of letrozole in this setting will not be available.
  • An updated analysis including all events before unblinding confirmed the results of the interim analysis.
  • In addition, a statistically significant improvement in distant DFS was found for patients who received letrozole (HR, 0.60; 95% CI, 0.43–0.84; P = .002). Although no statistically significant difference was found in the total study population, the lymph node-positive patients who received letrozole also experienced a statistically significant improvement in OS (HR, 0.61; 95% CI, 0.38–0.98; P = .04), although the P value was not corrected for multiple comparisons.
  • The NSABP B-33 (NCT00016432) trial that was designed to compare 5 years of exemestane with placebo after 5 years of tamoxifen was stopped prematurely when the results of CAN-NCIC-MA17 became available. At the time of analysis, 560 of the 783 patients who were randomly assigned to receive exemestane remained on that drug and 344 of the 779 patients who were randomly assigned to receive placebo had crossed over to exemestane.
  • [Level of evidence: 1iDii]
  • An intent-to-treat analysis of the primary study endpoint, DFS, demonstrated a nonsignificant benefit of exemestane (HR, 0.68; P = .07).
  • Duration of AI therapy

    The optimal duration of AI therapy is uncertain, and multiple trials have evaluated courses longer than 5 years.

    Evidence regarding extension of endocrine therapy beyond 5 years of initial AI-based adjuvant therapy:

  • A double-blind, randomized, phase III trial assessed the effect of an additional 5 years of letrozole versus placebo in 1,918 women who had received 5 years of an AI.
  • Patients who received previous tamoxifen therapy were included. Most women on the study (70.6%) had received 4.5 to 6 years of adjuvant tamoxifen, but a significant proportion of them (20.7%) had been treated initially with an AI.
  • At a median follow-up of 6.3 years, DFS, the primary study endpoint, was significantly improved in patients randomly assigned to receive letrozole (HR, 0.66; 95% CI, 0.48–0.91; P = .01), and 5-year DFS was improved from 91% to 95%.
  • [Level of evidence: 1iDii]
  • OS rates showed no difference (HR, 0.97; 95% CI, 0.73–1.28; P = .83). More patients on letrozole had fractures (14%) than did patients on placebo (9%) (P = .001).
  • QOL was assessed with the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36) and Menopause-Specific QOL (MENQOL) instruments. More than 85% of participants completed yearly assessments over a 5-year period.
  • No between-group differences were found on the four MENQOL subscales or on the SF-36 summary score.
  • SF-36 role-emotional and bodily pain scores were statistically significantly worse (P = .03) among patients receiving letrozole, but the differences observed were fewer than the minimum clinically important differences for the SF-36 instrument.
  • A randomized phase III study assessed the effect of an additional 2.5 years of letrozole versus 5 years of letrozole in 1,824 women who received 5 years of an AI.
  • [Level of evidence: 1iiDii]
  • DFS events were similar in both groups (HR, 0.92; 95% CI, 0.74–1.16). The distant metastasis-free interval was also similar (HR, 1.06; 95% CI, 0.78–1.45).
  • A subgroup analysis did not identify patients who benefited from 5-year extended therapy.
  • This study did not show that 10 years of AI therapy was superior to 7.5 years of AI therapy.
  • A phase III trial (NSABP-B42 [NCT00382070]) randomly assigned, in a double-blind fashion, 3,966 women who received 5 years of initial adjuvant therapy with an AI or received tamoxifen for 2 to 3 years followed by an AI to receive 5 mg of letrozole or placebo for 5 additional years.
  • [Level of evidence: 1iDii] The planned analysis of DFS was carried out after a median follow-up of 6.9 years.
  • The 7-year DFS was 81.3% in the placebo group and 84.7% in the letrozole group (HR, 0.85; 95% CI, 0.73–0.999; P = .048). The observed difference was not statistically significant when interim analyses were accounted for.
  • There were no statistically significant differences in adverse events between the arms.
  • A phase III trial conducted by the IBCSG (SOLE [NCT00553410]) randomly assigned 4,851 eligible receptor-positive postmenopausal women who had completed 5 years of adjuvant therapy with an AI, a selective estrogen receptor modulator, or both, to receive 2.5 mg of letrozole daily for 5 years or to an intermittent schedule in which there was a 3-month break at the end of each of the first 4 years, but not in the final year.
  • There was no observed advantage to the intermittent schedule with respect to DFS (HR, 1.08; 95% CI, 0.93–1.26; P = .31) or in the frequency of adverse events.
  • [Level of evidence: 1iiDii]
  • A phase III trial conducted by the Dutch Breast Cancer Study Group (DATA [NCT00301457]) randomly assigned 1,860 eligible receptor-positive postmenopausal women who had received 2 to 3 years of tamoxifen to receive either 3 or 6 years of anastrozole (1 mg daily).
  • At 3 years, 1,660 of these women were free of disease: among them, DFS was observed to be improved, but not statistically significantly so, on the extended-therapy arm (HR, 0.79; 95% CI, 0.62–1.02).
  • [Level of evidence: 1iiDii] Myalgia and osteoporosis/osteopenia were more frequent on the extended-therapy arm.
  • The phase III ABCSG-16 study, published in abstract form, enrolled 3,484 postmenopausal women with hormone receptor–positive breast cancer who had completed 5 years of endocrine therapy with tamoxifen and/or an AI to either 2 or 5 years of extended therapy with anastrozole. The primary endpoint was DFS. Secondary endpoints included OS, time to contralateral breast cancer, time to second primary cancer, fractures, and toxicity.
  • After 10 years of follow-up, there was no difference in DFS between the two arms (71.1% for the 2-year course vs. 70.3% for the 5-year course [HR, 0.997; 95% CI, 0.86–1.15; P = .982]). In addition, there was no difference in OS, time to second primary cancer, and time to contralateral breast cancer between the arms.
  • There was an insignificant trend towards more fractures in the 5-year arm.
  • Bone-modifying therapy

    Both bisphosphonates and denosumab have been evaluated as adjuvant therapies for early-stage breast cancer; however, the role of these agents as adjuvant therapy for early-stage breast cancer is unclear. Compared with denosumab, the amount of evidence supporting bisphosphonates is greater, and there is evidence supporting breast cancer mortality—an endpoint that is more clinically relevant.

    Evidence (bisphosphonates in the treatment of early breast cancer):

  • A meta-analysis has been conducted that included the individual patient data of 18,766 patients from 26 adjuvant trials of bisphosphonates of any type.
  • Overall, reductions associated with bisphosphonate use in recurrence (RR, 0.94; 95% CI, 0.87–1.01; 2P = .08), distant recurrence (RR, 0.92; 95% CI, 0.85–0.99; 2P = .03), and breast cancer mortality (RR, 0.91; 95% CI, 0.83–0.99; 2P = .04) were of only borderline significance, but the reduction in bone recurrence was more definite (RR, 0.83; 95% CI, 0.73–0.94; 2P = .004).
  • In a prespecified subgroup analysis, among premenopausal women, treatment had no apparent effect on any outcome, but among 11,767 postmenopausal women, it produced highly significant reductions in recurrence (RR, 0.86; 95% CI, 0.78–0.94; 2P = .002), distant recurrence (RR, 0.82; 95% CI, 0.74–0.92; 2P = .0003), bone recurrence (RR, 0.72; 95% CI, 0.60–0.86; 2P = .0002), and breast cancer mortality (RR, 0.82; 95% CI, 0.73–0.93; 2P = .002).
  • The ABCSG-18 (NCT00556374) trial randomly assigned 3,435 postmenopausal women with receptor-positive breast cancer who were receiving an AI to receive denosumab or a placebo every 6 months during AI therapy.
  • The patients were unblinded when results related to bone events were reported, and patients on placebo were allowed to cross over to the active drug.
  • In an intent-to-treat analysis according to the original assignment, DFS, a secondary endpoint, was improved in patients randomly assigned to receive denosumab (HR, 0.82; 95% CI, 0.69–0.98; P = .0260; 5-year DFS, 89.2% vs. 87.3%).
  • [Level of evidence: 1iiDii]
  • The frequency of adverse events was similar in the two groups.
  • An ongoing phase III trial (NCT01077154) is examining the activity of the bone-modifying agent, denosumab, in stage II and stage III breast cancer.

    Preoperative Systemic Therapy

    Preoperative chemotherapy, also known as primary or neoadjuvant chemotherapy, has traditionally been administered in patients with locally advanced breast cancer to reduce tumor volume and allow for definitive surgery. In addition, preoperative chemotherapy is being used for some patients with primary operable stage II or stage III breast cancer. A meta-analysis of multiple, randomized clinical trials performed in 2005 demonstrated that preoperative chemotherapy is associated with identical DFS and OS compared with the administration of the same therapy in the adjuvant setting.

    [Level of evidence: 1iiA]

    In 2019, the Early Breast Cancer Trialists’ Collaborative Group performed a meta-analysis using individual patient data from 4,756 women who participated in 10 trials that compared neoadjuvant chemotherapy with the same regimen given in the adjuvant setting.

    Compared with adjuvant therapy, neoadjuvant therapy was associated with an increased frequency of breast conservation (65% vs. 49%). There were no differences between neoadjuvant chemotherapy and adjuvant therapy in distant recurrence, breast cancer mortality, or death from any cause; however, neoadjuvant therapy was associated with higher 15-year local recurrence (21.4% vs. 15.9%; rate ratio, 1.37; 95% CI, 1.17−1.61; P = .001).

    [Level of evidence: 1iiA]

    Current consensus opinion for use of preoperative chemotherapy recommends anthracycline- and taxane-based therapy, and prospective trials suggest that preoperative anthracycline- and taxane-based therapy is associated with higher response rates than alternative regimens (e.g., anthracycline alone).

    [Level of evidence: 1iiDiv]

    A potential advantage of preoperative systemic therapy is the increased likelihood of success with definitive local therapy in those presenting with locally-advanced, unresectable disease. It may also offer benefit to carefully selected patients with primary operable disease by enhancing the likelihood of breast conservation and providing prognostic information where pCR is obtained. In these cases, a patient can be informed that there is a very low risk of recurrence compared with a situation in which a large amount of residual disease remains.

    pCR has been utilized as a surrogate endpoint for long-term outcomes, such as DFS, EFS, and OS, in preoperative clinical trials in breast cancer. A pooled analysis (CTNeoBC) of 11 preoperative randomized trials (n = 11,955) determined that pCR, defined as no residual invasive cancer in the breast and axillary nodes with presence or absence of in situ cancer (ypT0/is ypN0 or ypT0 ypN0), provided a better association with improved outcomes compared with eradication of invasive tumor from the breast alone (ypT0/is).

    pCR could not be validated in this study as a surrogate endpoint for improved EFS and OS.

    [Level of evidence: 3iiiD] Because of a strong association of pCR with substantially improved outcomes in individual patients with more aggressive subtypes of breast cancer, the FDA has supported use of pCR as an endpoint in preoperative clinical trials for patients with high-risk, early-stage breast cancer.

    Postoperative radiation therapy may also be omitted in a patient with histologically negative axillary nodes after preoperative therapy, irrespective of lymph node status before preoperative therapy, allowing for tailoring of treatment to the individual.

    Potential disadvantages with this approach include the inability to determine an accurate pathological stage after preoperative chemotherapy. However, the knowledge of the presence of residual disease may provide more personalized prognostic information, as noted above.

    Patient selection, staging, treatment, and follow-up

    Multidisciplinary management of patients undergoing preoperative therapy by an experienced team is essential to optimize the following:

  • Patient selection.
  • Choice of systemic therapy.
  • Management of the axilla and surgical approach.
  • Decision to administer adjuvant radiation therapy.
  • The tumor histology, grade, and receptor status are carefully evaluated before preoperative therapy is initiated. Patients whose tumors have a pure lobular histology, low grade, or high hormone-receptor expression and HER2-negative status are less likely to respond to chemotherapy and should be considered for primary surgery, especially when the nodes are clinically negative. Even if adjuvant chemotherapy is administered after surgery in these cases, a third-generation regimen (anthracycline-taxane based) may be avoided.

    Before beginning preoperative therapy, the extent of the disease within the breast and regional lymph nodes should be assessed. Staging of systemic disease may include the following:

  • CT scan of the chest and abdomen and a bone scan.
  • Positron-emission tomography.
  • Baseline breast imaging is performed when breast-conserving therapy is desired to identify the tumor location and exclude multicentric disease. Suspicious abnormalities are usually biopsied before beginning treatment and a marker placed at the center of the breast tumor(s). When possible, suspicious axillary nodes may be biopsied before initiation of systemic treatment.

    The optimal timing of sentinel lymph node (SLN) biopsy has not been established in patients receiving preoperative therapy. The following points should be considered:

  • If suspicious lymph nodes are positive for malignancy at baseline, an SLN biopsy may be performed after preoperative therapy but is associated with a high false-negative rate. If the procedure is performed with both radiocolloid and blue dye and at least two nodes are sampled (provides 10.8% false-negative rate) and are negative, then axillary lymph node dissection (ALND) may be omitted.
  • [Level of evidence: 2Div];
  • [Level of evidence: 3iiD];
  • [Level of evidence: 3iiDiv] Alternatively, it is acceptable in this circumstance to perform ALND, based on the possibility of undetected positive nodes.
  • In patients with clinically negative nodes, SLN biopsy may be performed before preoperative therapy because of the false-negative rates observed when performed after preoperative therapy.
  • If the SLN biopsy is negative, ALND can be omitted.
  • If SLN biopsy is performed after preoperative chemotherapy, the baseline clinical and postchemotherapy pathological nodal status should be taken into consideration when deciding whether ALND is necessary. ALND is usually performed in the setting of node-positivity.
  • When considering preoperative therapy, treatment options include the following:

  • For HER2-negative breast tumors, an anthracycline-taxane based chemotherapy regimen.
  • For HER2-positive disease, chemotherapy and HER2-targeted therapy.
  • Ideally, the entire treatment regimen is administered before surgery.
  • For postmenopausal women with hormone receptor–positive breast cancer, chemotherapy is an option. For those who cannot be given chemotherapy, preoperative endocrine therapy may be an option.
  • For premenopausal women with hormone–responsive cancer, the use of preoperative endocrine therapy is under investigation.
  • Regular clinical assessment of response to therapy is necessary after beginning preoperative therapy. Repeat radiographic assessment is also required if breast conservation is the surgical goal. Patients with progressive disease during preoperative therapy may either transition to a non–cross-resistant regimen or proceed to surgery, if feasible.

    Although switching to a non–cross-resistant regimen results in a higher pCR rate than continuing the same therapy, there is no clear evidence that other breast cancer outcomes are improved with this approach.

    HER2/neu–negative breast cancer

    Early trials examined whether anthracycline-based regimens used in the adjuvant setting would prolong DFS and OS when used in the preoperative setting. The evidence supports higher rates of breast-conserving therapy with the use of a preoperative anthracycline chemotherapy regimen than with postoperative use, but no improvement in survival was noted with the preoperative strategy.

    Evidence (preoperative anthracycline-based regimen):

  • A randomized clinical trial (NSABP-B-18) was designed to determine whether the preoperative combination of four cycles of AC would more effectively prolong DFS and OS than the same chemotherapy given in the adjuvant setting.
  • [Level of evidence: 1iiA]
  • After preoperative therapy, 36% of the patients had a complete clinical response.
  • More patients treated with preoperative chemotherapy were able to have breast-conserving procedures as compared with those patients in the postoperative chemotherapy group (68% vs. 60%; P = .001).
  • No statistically significant difference existed, however, in DFS, distant DFS, or OS in the patients who received preoperative chemotherapy as compared with those who received postoperative chemotherapy.
  • An EORTC randomized trial (EORTC-10902) likewise demonstrated no improvement in DFS or OS but showed an increased frequency of conservative surgery with the use of preoperative versus postoperative FEC chemotherapy.
  • [Level of evidence: 1iiA]
  • To improve the results observed with AC alone, a taxane was added to the chemotherapy regimen. The following study results support the addition of a taxane to an anthracycline-based chemotherapy regimen for HER2-negative breast tumors.

    Evidence (anthracycline-taxane–based chemotherapy regimen):

  • In an effort to improve on the results observed with AC alone, the NSABP (NSABP B-27 [NCT00002707]) trial was conducted.
  • [Level of evidence: 1iiD]
  • The administration of preoperative AC followed by docetaxel was associated with a higher clinical complete response rate compared with the administration of AC alone (63.6% for AC followed by docetaxel and 40.1% for AC alone; P < .001); a higher pCR rate was also observed (26.1% for AC followed by docetaxel and 13.7% for AC alone; P < .001).
  • Data from NSABP B-27 and the Aberdeen Breast Group Trial support the use of anthracycline-taxane–based regimens in women with initial response or with relative resistance to anthracyclines.
  • Alternative anthracycline-taxane schedules have also been evaluated (concurrent TAC) and appear similar in efficacy to the sequential approach described above.
  • [Level of evidence: 1iiDiv]
  • The phase III GeparSepto (NCT01583426) trial investigated an alternative taxane (nab-paclitaxel) in patients with untreated primary breast cancer.
  • Patients (n = 1,229) were randomly assigned to receive 12 weeks of nab-paclitaxel or paclitaxel followed by epirubicin and cyclophosphamide (EC) for four cycles. The pCR rate was higher in the nab-paclitaxel arm (233 patients, 38%; 95% CI, 35%–42%) when compared with the paclitaxel arm (174 patients, 29%; 95% CI, 25%–33%).
  • [Level of evidence: 1iiDiv]
  • The incorporation of many additional cytotoxic agents to anthracycline-taxane–based regimens has not offered a significant additional benefit to breast conservation or pCR rate in unselected breast cancer populations.
  • [Level of evidence: 1iiDiv]
  • Promising results have been observed, however, with the addition of carboplatin to anthracycline-taxane combination chemotherapy regimens in patients with triple-negative breast cancer (TNBC). Future definitive studies evaluating survival endpoints and the identification of biomarkers of response or resistance are necessary before the addition of carboplatin to standard preoperative chemotherapy can be considered a new standard of care.

    Evidence (adding carboplatin to an anthracycline-taxane–based chemotherapy regimen in patients with TNBC):

  • In the GeparSixto (NCT01426880) trial, carboplatin was added to an anthracycline-taxane–based backbone.
  • [Level of evidence: 1iiDiv]
  • Higher pCR rates were observed with the addition of carboplatin to an anthracycline-taxane–based backbone compared with anthracycline-taxane alone (36.9% vs. 53.2%; P = .005) in patients with TNBC.
  • The more intensive regimen was also associated with increased toxicity and treatment discontinuations (39% vs. 48%).
  • The CALGB 40603 (NCT00861705) trial compared an anthracycline-taxane backbone alone with an anthracycline-taxane backbone-plus-carboplatin in patients with stage II and stage III TNBC.
  • [Level of evidence: 1iiDiv]
  • The pCR rate for the breast and axilla was 54% for the anthracycline-taxane backbone-plus-carboplatin group versus 41% for the anthracycline-taxane backbone-alone group (P = .0029)
  • Importantly, results of studies in the adjuvant and metastatic settings have not demonstrated an OS benefit with the addition of bevacizumab to chemotherapy versus chemotherapy alone. However, the addition of bevacizumab to preoperative chemotherapy has been associated with an increased pCR rate alongside increased toxicity such as hypertension, cardiac toxicity, hand-foot syndrome, and mucositis (e.g., NSABP B-40 [NCT00408408] and GeparQuinto [NCT00567554]).

    [Level of evidence: 1iiDiv] However, it is not clear that the modest benefit observed will translate into a longer term survival advantage.

    HER2/neu-positive breast cancer

    After the success in the adjuvant setting, initial reports from phase II studies indicated improved pCR rates when trastuzumab, a monoclonal antibody that binds the extracellular domain of HER2, was added to preoperative anthracycline-taxane–based regimens.

    [Level of evidence: 1iiDiv] This has been confirmed in phase III studies.

    Trastuzumab

    Evidence (trastuzumab):

  • The phase III NeOAdjuvant Herceptin (NOAH) study randomly assigned patients with HER2-positive locally advanced or inflammatory breast cancers to undergo preoperative chemotherapy with or without 1 year of trastuzumab therapy.
  • [Level of evidence:1iiA]
  • Study results confirmed that the addition of trastuzumab to preoperative chemotherapy resulted not only in improved clinical responses (87% vs. 74%) and pathologic responses (breast and axilla, 38% vs. 19%) but also in EFS, the primary outcome.
  • [Level of evidence:1iiA]
  • After a median follow-up of 5.4 years, the EFS benefit was 58% with the addition of trastuzumab to chemotherapy (95% CI, 48–66) and 43% (95% CI, 34–52) in patients in the chemotherapy group. The unadjusted HR for EFS between the two randomized HER2-positive treatment groups was 0.64 (95% CI, 0.44–0.93; two-sided log-rank P = .016). EFS was strongly associated with pCR in patients who received trastuzumab.
  • Symptomatic cardiac failure occurred in two patients who received concurrent doxorubicin and trastuzumab for two cycles. Close cardiac monitoring of LVEF and the total dose of doxorubicin not exceeding 180 mg/m2 accounted for the relatively low number of declines in LVEF and only two cardiac events. (Refer to the Cardiac toxic effects with adjuvant trastuzumab section in this summary for more information.)
  • [Level of evidence: 1iiD]
  • A phase III trial (Z1041 [NCT00513292]) randomly assigned patients with operable HER2-positive breast cancer to receive trastuzumab sequential to or concurrent with the anthracycline component (5-FU, epirubicin, cyclophosphamide) of the preoperative chemotherapy regimen.
  • [Level of evidence: 1iiDiv]
  • There was no significant difference in pCR rate in the breast between the arms (56.5% sequential, 54.2% concurrent; difference, 2.3% with 95% CI, -9.3–13.9).
  • In addition, asymptomatic declines in LVEF during preoperative chemotherapy were identified in similar proportions of patients in each arm.
  • The conclusion was that concurrent administration of trastuzumab with anthracyclines is not warranted based on these findings.
  • A subcutaneous formulation of trastuzumab has also been approved.

    The SafeHer (NCT01566721) trial evaluated the safety and tolerability of self-administered versus clinician-administered SQ trastuzumab in stage I to stage III HER2-positive breast cancer.

    Chemotherapy was administered concurrently or sequentially.

    A phase III (HannaH [NCT00950300]) trial also demonstrated that the pharmacokinetics and efficacy of preoperative SQ trastuzumab is noninferior to the IV formulation. This international, open-label trial (n = 596) randomly assigned women with operable, locally advanced, or inflammatory HER2-positive breast cancer to undergo preoperative chemotherapy (anthracycline-taxane–based), with either SQ-administered or IV-administered trastuzumab every 3 weeks before surgery. Patients received adjuvant trastuzumab to complete 1 year of therapy.

    [Level of evidence: 1iiD] The pCR rates between the arms differed by 4.7% (95% CI, 4.0–13.4); 40.7% in the IV-administered group versus 45.4% in the SQ-administered group, demonstrating noninferiority for the SQ formulation. EFS and OS were secondary endpoints. Six-year EFS was 65% in both arms (HR, 0.98; 95% CI, 0.74−1.29). Six-year OS was 84% in both arms (HR, 0.94; 95% CI, 0.61−1.45).

    Newer HER2-targeted therapies (lapatinib, pertuzumab) have also been investigated. It appears that dual targeting of the HER2 receptor results in an increase in pCR rate; however, no survival advantage has been demonstrated to date with this approach.

    Pertuzumab

    Pertuzumab is a humanized monoclonal antibody that binds to a distinct epitope on the extracellular domain of the HER2 receptor and inhibits dimerization. Pertuzumab, in combination with trastuzumab with or without chemotherapy, has been evaluated in two preoperative clinical trials to improve on the pCR rates observed with trastuzumab and chemotherapy.

    Evidence (pertuzumab):

  • In the open-label, randomized, phase II NeoSPHERE (NCT00545688) trial,
  • 417 women with tumors that were larger than 2 cm or node-positive, and who had HER2-positive breast cancer, were randomly assigned to one of four preoperative regimens:
  • [Level of evidence: 1iiDiv]
  • Docetaxel plus trastuzumab.
  • Docetaxel plus trastuzumab and pertuzumab.
  • Pertuzumab plus trastuzumab.
  • Docetaxel plus pertuzumab.
  • The following results were observed:

  • The pCR rates were 29% for docetaxel plus trastuzumab, 46% for docetaxel plus trastuzumab and pertuzumab, 17% for pertuzumab plus trastuzumab, and 24% for docetaxel plus pertuzumab. Therefore, the highest pCR rate was seen in the preoperative treatment arm with dual HER2 blockade plus chemotherapy.
  • The addition of pertuzumab to the docetaxel-plus-trastuzumab combination did not appear to increase toxic effects, including the risk of cardiac adverse events.
  • Despite the high pCR rate observed with dual HER2 blockade plus chemotherapy, PFS and DFS rates were not improved, although the NeoSPHERE trial was not powered to detect differences in long-term efficacy outcomes.
  • The open-label, randomized, phase II TRYPHAENA (NCT00976989) trial sought to evaluate the tolerability and activity associated with trastuzumab and pertuzumab.
  • [Level of evidence: 1iiDiv] All 225 women with tumors that were larger than 2 cm or node positive, and who had operable, locally advanced, or inflammatory HER2-positive breast cancer, were randomly assigned to one of three preoperative regimens:
  • Concurrent FEC plus trastuzumab plus pertuzumab (×3) followed by concurrent docetaxel plus trastuzumab plus pertuzumab.
  • FEC alone (×3) followed by concurrent docetaxel plus trastuzumab plus pertuzumab (×3).
  • Concurrent docetaxel and carboplatin plus trastuzumab plus pertuzumab (×6).
  • The following results were observed:

  • The pCR rate was equivalent across all three treatment arms: (62% for concurrent FEC plus trastuzumab plus pertuzumab followed by concurrent docetaxel plus trastuzumab plus pertuzumab; 57% for FEC alone followed by concurrent docetaxel plus trastuzumab plus pertuzumab; and 66% for concurrent docetaxel and carboplatin plus trastuzumab plus pertuzumab).
  • All three arms were associated with a low incidence of cardiac adverse events of 5% or less.
  • Because of these studies, the FDA-granted accelerated approval for the use of pertuzumab as part of a preoperative treatment for women with early-stage, HER2-positive breast cancer whose tumors are larger than 2 cm or node-positive.

    The FDA approval of pertuzumab was subsequently converted to regular approval following the results of the confirmatory APHINITY (NCT01358877) trial, a randomized, phase III, adjuvant study for women with HER2-positive breast cancer, which demonstrated improved invasive DFS with the combination of chemotherapy and dual HER2-targeted therapy with pertuzumab plus trastuzumab compared with chemotherapy and trastuzumab alone.

    Pertuzumab is now approved both in combination with trastuzumab and chemotherapy for the neoadjuvant therapy of locally advanced, inflammatory, or early-stage HER2-positive breast cancer, which is larger than 2 cm or node-positive, as part of a complete treatment regimen and in combination with chemotherapy and trastuzumab as adjuvant treatment for HER2-positive early breast cancer at a high risk of recurrence.

    Lapatinib

    Lapatinib is a small-molecule kinase inhibitor that is capable of dual receptor inhibition of both epidermal growth factor receptor and HER2. Study results do not support the use of lapatinib in the preoperative setting.

    Evidence (against the use of lapatinib for HER2-positive early breast cancer):

  • The role of lapatinib in the preoperative setting was examined in the GeparQuinto [NCT00567554] trial.
  • This phase III trial randomly assigned women with HER2-positive early-stage breast cancer to receive chemotherapy with trastuzumab or chemotherapy with lapatinib, with pCR as the primary endpoint.
  • [Level of evidence: 1iiDiv]
  • pCR in the chemotherapy and lapatinib arm was significantly lower than it was with chemotherapy and trastuzumab (22.7% vs. 30.3%; P = .04).
  • Other endpoints of DFS, RFS, and OS have not been reported.
  • CALGB 40601 (NCT00770809) was a phase III trial that randomly assigned patients with stage II and III HER2-positive breast cancer to receive either paclitaxel plus trastuzumab or paclitaxel plus trastuzumab plus lapatinib. The primary endpoint of the study was pCR in the breast.
  • [Level of evidence: 1iiDiv]
  • pCR in patients who received paclitaxel plus trastuzumab was 46% (95% CI, 37%–55%), and pCR in the patients who received paclitaxel plus trastuzumab plus lapatinib was 56% (95% CI, 47%–65%; P = .13), indicating no benefit with the addition of lapatinib.
  • The NeoALTTO [NCT00553358] phase III trial randomly assigned 455 women with HER2-positive early-stage breast cancer (tumor size >2 cm) to receive preoperative lapatinib, or preoperative trastuzumab, or preoperative lapatinib plus trastuzumab. This anti-HER2 therapy was given alone for 6 weeks and then weekly paclitaxel was added to the regimen for an additional 12 weeks. The primary endpoint of this study was pCR.
  • pCR was significantly higher in the lapatinib-plus-trastuzumab combination arm (51.3%; 95% CI, 43.1–59.5) than in the trastuzumab-alone arm (29.5%; 95% CI, 22.4–37.5).
  • No significant difference in pCR was seen between the lapatinib (24.7%, 95% CI, 18.1–32.3) and trastuzumab groups (difference, -4.8%, -17.6 to 8.2; P = .34).
  • An updated analysis for the prespecified secondary endpoints of EFS and OS indicate no difference between the groups.
  • More definitive efficacy data were provided by the phase III ALLTO (NCT00490139) trial that randomly assigned women to receive trastuzumab or trastuzumab plus lapatinib in the adjuvant setting.

    The trial did not meet its primary endpoint of DFS. The doubling in pCR rate observed with the addition of lapatinib to trastuzumab in the NeoALTTO trial did not translate into improved survival outcomes in the ALTTO trial at 4.5 years of median follow-up. This indicates that there is currently no role for the use of lapatinib in the preoperative or adjuvant settings.

    Cardiac toxic effects with pertuzumab and lapatinib

    A pooled analysis of cardiac safety in 598 cancer patients treated with pertuzumab was performed using data supplied by Roche and Genentech.

    [Level of evidence: 3iiiD]

  • Asymptomatic left ventricular systolic dysfunction was observed in 6.9% of patients receiving pertuzumab alone (n = 331; 95% CI, 4.5–10.2), 3.4% of patients receiving pertuzumab in combination with a non–anthracycline-containing chemotherapy (n = 175; 95% CI, 1.3–7.3), and 6.5% of patients receiving pertuzumab in combination with trastuzumab (n = 93; 95% CI, 2.4–13.5).
  • Symptomatic heart failure was observed in 1 (0.3%), 2 (1.1%), and 1 (1.1%) patients, respectively.
  • A meta-analysis of randomized trials (n = 6) that evaluated the administration of anti-HER2 monotherapy (trastuzumab or lapatinib or pertuzumab) versus dual anti-HER2 therapy (trastuzumab plus lapatinib or trastuzumab plus pertuzumab) was performed.

    [Level of evidence: 3iiiD]

  • LVEF decline was observed in 3.1% of the patients who received monotherapy (95% CI, 2.2%–4.4%) and 2.9% of the patients who received dual therapy (95% CI, 2.1%–4.1%).
  • Symptomatic heart failure was observed in 0.88% of the patients who received monotherapy (95% CI, 0.47%–1.64%) and 1.49% of the patients who received dual therapy (95% CI, 0.98%–2.23%).
  • Preoperative endocrine therapy

    Preoperative endocrine therapy may be an option for postmenopausal women with hormone receptor-positive breast cancer when chemotherapy is not a suitable option because of comorbidities or performance status. Although the toxicity profile of preoperative hormonal therapy over the course of 3 to 6 months is favorable, the pCR rates obtained (1%–8%) are far lower than have been reported with chemotherapy in unselected populations.

    [Level of Evidence: 1iDiv]

    Longer duration of preoperative therapy may be required in this patient population. Preoperative tamoxifen was associated with an overall response rate of 33%, with maximum response occurring up to 12 months after therapy in some patients.

    A randomized study of 4, 8, or 12 months of preoperative letrozole in elderly patients who were not fit for chemotherapy indicated that the longer duration of therapy resulted in the highest pCR rate (17.5% vs. 5% vs. 2.5%, P-value for trend < .04).

    [Level of Evidence: 1iiDiv]

    AIs have also been compared with tamoxifen in the preoperative setting. Overall objective response and breast-conserving therapy rates with 3 to 4 months of preoperative therapy were either statistically significantly improved in the AI-treated women

    or comparable to tamoxifen-associated outcomes.

    An American College of Surgeons Oncology Group trial is currently comparing the efficacy of anastrozole, letrozole, or exemestane in the preoperative setting.

    The use of preoperative endocrine therapy in premenopausal women with hormone-responsive breast cancer remains investigational.

    Postoperative therapy

    Capecitabine

    One clinical trial suggested that there is a benefit to using capecitabine as adjuvant therapy in patients who did not obtain a pCR after preoperative chemotherapy.

    Evidence (capecitabine):

  • In a study conducted in Japan and Korea, 910 women with HER2/neu–negative breast cancers, who had residual disease after preoperative chemotherapy with anthracyclines, taxanes, or both, were randomly assigned in a nonblinded fashion to receive 6 to 8 four-weekly cycles of capecitabine or no further chemotherapy.
  • The study was terminated because of the results of a planned interim analysis, and a final analysis was done.
  • In the final analysis, which included 887 eligible patients, DFS, the primary endpoint, was statistically significantly prolonged (HR, 0.70; 95% CI, 0.53–0.92; P = .01; 5-year DFS, 74.1% vs. 67.6%).
  • OS, a secondary endpoint, was also longer in the capecitabine group (HR, 0.59; 95% CI, 0.39–0.90; P = .01; 5-year OS, 89.2% vs. 83.6%).
  • In the capecitabine group, 73.4% of the patients experienced hand-foot syndrome of varying degrees of severity.
  • Trastuzumab emtansine (T-DM1)

    Evidence (T-DM1):

  • In a phase III trial (KATHERINE [NCT01772472]), 1,486 women with HER2-positive disease who received a preoperative taxane-containing chemotherapy (with or without an anthracycline) along with trastuzumab with or without a second HER2 targeted agent, but who had residual disease after surgery, were randomly assigned to receive 14 cycles of adjuvant trastuzumab or T-DM1.
  • [Level of evidence: 1iDii]
  • At the time of a planned interim analysis, invasive DFS (the primary study endpoint) was significantly higher in the T-DM1 group than in the trastuzumab group (HRinvasive disease or death, 0.50; 95% CI, 0.39–0.64; P < .001; invasive DFS at 3 years, 88.3% vs. 77%).
  • Data on OS are immature and not significant (HR, 0.70; 95% CI, 0.47–1.05).
  • Patients receiving T-DM1 were more likely to discontinue treatment because of an adverse event (18% vs. 2.1%) and had a higher frequency of sensory neuropathy (18.6% vs. 6.9%), most cases of which had resolved at the time of the analysis.
  • On subgroup analysis, the benefit of T-DM1 was observed in all subgroups, including participants who received dual HER2 targeted therapy in the preoperative setting.
  • These approaches and participation in clinical trials of novel therapies should be considered for patients with residual disease after preoperative therapy. EA1131 (NCT02445391) is a randomized phase III clinical trial that randomly assigned patients with residual basal-like TNBC after preoperative therapy to receive platinum-based chemotherapy or capecitabine. S1418/BR006 (NCT02954874) is a phase III trial evaluating the efficacy of pembrolizumab as adjuvant therapy for patients with residual TNBC (≥1 cm invasive cancer or residual nodes) after preoperative therapy.

    Radiation therapy is administered after breast conservation in most women who have received preoperative therapy to reduce the risk of locoregional recurrence. Baseline clinical and subsequent pathologic staging should be considered in deciding whether to administer postmastectomy radiation.

    Other adjuvant systemic treatments may be administered either postoperatively, during, or after completion of adjuvant radiation, including adjuvant hormonal therapy for patients with hormone receptor-positive disease and adjuvant trastuzumab for those with HER2-positive disease. (Refer to the Hormone receptor–positive breast cancer subsection in the Early/Localized/Operable Breast Cancer section of this summary for more information.)

    Posttherapy Surveillance

    The frequency of follow-up and the appropriateness of screening tests after the completion of primary treatment for stage I, stage II, or stage III breast cancer remain controversial.

    Evidence from randomized trials indicates that periodic follow-up with bone scans, liver sonography, chest x-rays, and blood tests of liver function does not improve survival or quality of life when compared with routine physical examinations.

    Even when these tests permit earlier detection of recurrent disease, patient survival is unaffected.

    On the basis of these data, acceptable follow-up can be limited to the following for asymptomatic patients who complete treatment for stages I to III breast cancer:

  • Physical examination.
  • Annual mammography.
  • Current Clinical Trials

    Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

    ReferenceSection

  • Fisher B, Fisher ER, Redmond C, et al.: Tumor nuclear grade, estrogen receptor, and progesterone receptor: their value alone or in combination as indicators of outcome following adjuvant therapy for breast cancer. Breast Cancer Res Treat 7 (3): 147-60, 1986.
  • Thor AD, Berry DA, Budman DR, et al.: erbB-2, p53, and efficacy of adjuvant therapy in lymph node-positive breast cancer. J Natl Cancer Inst 90 (18): 1346-60, 1998.
  • Paik S, Bryant J, Park C, et al.: erbB-2 and response to doxorubicin in patients with axillary lymph node-positive, hormone receptor-negative breast cancer. J Natl Cancer Inst 90 (18): 1361-70, 1998.
  • Simpson JF, Gray R, Dressler LG, et al.: Prognostic value of histologic grade and proliferative activity in axillary node-positive breast cancer: results from the Eastern Cooperative Oncology Group Companion Study, EST 4189. J Clin Oncol 18 (10): 2059-69, 2000.
  • Hutchins LF, Green SJ, Ravdin PM, et al.: Randomized, controlled trial of cyclophosphamide, methotrexate, and fluorouracil versus cyclophosphamide, doxorubicin, and fluorouracil with and without tamoxifen for high-risk, node-negative breast cancer: treatment results of Intergroup Protocol INT-0102. J Clin Oncol 23 (33): 8313-21, 2005.
  • Abrams JS, Phillips PH, Friedman MA: Meeting highlights: a reappraisal of research results for the local treatment of early stage breast cancer. J Natl Cancer Inst 87 (24): 1837-45, 1995.
  • Weiss MC, Fowble BL, Solin LJ, et al.: Outcome of conservative therapy for invasive breast cancer by histologic subtype. Int J Radiat Oncol Biol Phys 23 (5): 941-7, 1992.
  • van Dongen JA, Voogd AC, Fentiman IS, et al.: Long-term results of a randomized trial comparing breast-conserving therapy with mastectomy: European Organization for Research and Treatment of Cancer 10801 trial. J Natl Cancer Inst 92 (14): 1143-50, 2000.
  • Fisher B, Anderson S, Bryant J, et al.: Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347 (16): 1233-41, 2002.
  • Blichert-Toft M, Rose C, Andersen JA, et al.: Danish randomized trial comparing breast conservation therapy with mastectomy: six years of life-table analysis. Danish Breast Cancer Cooperative Group. J Natl Cancer Inst Monogr (11): 19-25, 1992.
  • van Dongen JA, Bartelink H, Fentiman IS, et al.: Randomized clinical trial to assess the value of breast-conserving therapy in stage I and II breast cancer, EORTC 10801 trial. J Natl Cancer Inst Monogr (11): 15-8, 1992.
  • Sarrazin D, Lê MG, Arriagada R, et al.: Ten-year results of a randomized trial comparing a conservative treatment to mastectomy in early breast cancer. Radiother Oncol 14 (3): 177-84, 1989.
  • Jacobson JA, Danforth DN, Cowan KH, et al.: Ten-year results of a comparison of conservation with mastectomy in the treatment of stage I and II breast cancer. N Engl J Med 332 (14): 907-11, 1995.
  • Veronesi U, Cascinelli N, Mariani L, et al.: Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med 347 (16): 1227-32, 2002.
  • Veronesi U, Salvadori B, Luini A, et al.: Breast conservation is a safe method in patients with small cancer of the breast. Long-term results of three randomised trials on 1,973 patients. Eur J Cancer 31A (10): 1574-9, 1995.
  • Freedman GM, Anderson PR, Li T, et al.: Locoregional recurrence of triple-negative breast cancer after breast-conserving surgery and radiation. Cancer 115 (5): 946-51, 2009.
  • Schmidt-Ullrich R, Wazer DE, Tercilla O, et al.: Tumor margin assessment as a guide to optimal conservation surgery and irradiation in early stage breast carcinoma. Int J Radiat Oncol Biol Phys 17 (4): 733-8, 1989.
  • Solin LJ, Fowble BL, Schultz DJ, et al.: The significance of the pathology margins of the tumor excision on the outcome of patients treated with definitive irradiation for early stage breast cancer. Int J Radiat Oncol Biol Phys 21 (2): 279-87, 1991.
  • Wazer DE, Schmidt-Ullrich RK, Schmid CH, et al.: The value of breast lumpectomy margin assessment as a predictor of residual tumor burden. Int J Radiat Oncol Biol Phys 38 (2): 291-9, 1997.
  • Moran MS, Schnitt SJ, Giuliano AE, et al.: Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. J Clin Oncol 32 (14): 1507-15, 2014.
  • Chagpar AB, Killelea BK, Tsangaris TN, et al.: A Randomized, Controlled Trial of Cavity Shave Margins in Breast Cancer. N Engl J Med 373 (6): 503-10, 2015.
  • Barth RJ, Danforth DN, Venzon DJ, et al.: Level of axillary involvement by lymph node metastases from breast cancer is not an independent predictor of survival. Arch Surg 126 (5): 574-7, 1991.
  • Rivadeneira DE, Simmons RM, Christos PJ, et al.: Predictive factors associated with axillary lymph node metastases in T1a and T1b breast carcinomas: analysis in more than 900 patients. J Am Coll Surg 191 (1): 1-6; discussion 6-8, 2000.
  • Greco M, Agresti R, Cascinelli N, et al.: Breast cancer patients treated without axillary surgery: clinical implications and biologic analysis. Ann Surg 232 (1): 1-7, 2000.
  • Kern KA: Sentinel lymph node mapping in breast cancer using subareolar injection of blue dye. J Am Coll Surg 189 (6): 539-45, 1999.
  • Rubio IT, Korourian S, Cowan C, et al.: Sentinel lymph node biopsy for staging breast cancer. Am J Surg 176 (6): 532-7, 1998.
  • Veronesi U, Paganelli G, Galimberti V, et al.: Sentinel-node biopsy to avoid axillary dissection in breast cancer with clinically negative lymph-nodes. Lancet 349 (9069): 1864-7, 1997.
  • Albertini JJ, Lyman GH, Cox C, et al.: Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. JAMA 276 (22): 1818-22, 1996.
  • Krag D, Weaver D, Ashikaga T, et al.: The sentinel node in breast cancer--a multicenter validation study. N Engl J Med 339 (14): 941-6, 1998.
  • Veronesi U, Paganelli G, Viale G, et al.: Sentinel lymph node biopsy and axillary dissection in breast cancer: results in a large series. J Natl Cancer Inst 91 (4): 368-73, 1999.
  • Mansel RE, Fallowfield L, Kissin M, et al.: Randomized multicenter trial of sentinel node biopsy versus standard axillary treatment in operable breast cancer: the ALMANAC Trial. J Natl Cancer Inst 98 (9): 599-609, 2006.
  • Krag DN, Anderson SJ, Julian TB, et al.: Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol 11 (10): 927-33, 2010.
  • Giuliano AE, Hunt KK, Ballman KV, et al.: Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA 305 (6): 569-75, 2011.
  • Galimberti V, Cole BF, Zurrida S, et al.: Axillary dissection versus no axillary dissection in patients with sentinel-node micrometastases (IBCSG 23-01): a phase 3 randomised controlled trial. Lancet Oncol 14 (4): 297-305, 2013.
  • Donker M, van Tienhoven G, Straver ME, et al.: Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): a randomised, multicentre, open-label, phase 3 non-inferiority trial. Lancet Oncol 15 (12): 1303-10, 2014.
  • Cunningham BL: Breast reconstruction following mastectomy. In: Najarian JS, Delaney JP, eds.: Advances in Breast and Endocrine Surgery. Chicago, Ill: Year Book Medical Publishers, 1986, pp 213-226.
  • Scanlon EF: The role of reconstruction in breast cancer. Cancer 68 (5 Suppl): 1144-7, 1991.
  • Hang-Fu L, Snyderman RK: State-of-the-art breast reconstruction. Cancer 68 (5 Suppl): 1148-56, 1991.
  • Feller WF, Holt R, Spear S, et al.: Modified radical mastectomy with immediate breast reconstruction. Am Surg 52 (3): 129-33, 1986.
  • Kuske RR, Schuster R, Klein E, et al.: Radiotherapy and breast reconstruction: clinical results and dosimetry. Int J Radiat Oncol Biol Phys 21 (2): 339-46, 1991.
  • Clarke M, Collins R, Darby S, et al.: Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366 (9503): 2087-106, 2005.
  • Eifel P, Axelson JA, Costa J, et al.: National Institutes of Health Consensus Development Conference Statement: adjuvant therapy for breast cancer, November 1-3, 2000. J Natl Cancer Inst 93 (13): 979-89, 2001.
  • Darby S, McGale P, Correa C, et al.: Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 378 (9804): 1707-16, 2011.
  • Romestaing P, Lehingue Y, Carrie C, et al.: Role of a 10-Gy boost in the conservative treatment of early breast cancer: results of a randomized clinical trial in Lyon, France. J Clin Oncol 15 (3): 963-8, 1997.
  • Bartelink H, Horiot JC, Poortmans P, et al.: Recurrence rates after treatment of breast cancer with standard radiotherapy with or without additional radiation. N Engl J Med 345 (19): 1378-87, 2001.
  • Bartelink H, Maingon P, Poortmans P, et al.: Whole-breast irradiation with or without a boost for patients treated with breast-conserving surgery for early breast cancer: 20-year follow-up of a randomised phase 3 trial. Lancet Oncol 16 (1): 47-56, 2015.
  • Wazer DE, Kramer B, Schmid C, et al.: Factors determining outcome in patients treated with interstitial implantation as a radiation boost for breast conservation therapy. Int J Radiat Oncol Biol Phys 39 (2): 381-93, 1997.
  • Whelan TJ, Pignol JP, Levine MN, et al.: Long-term results of hypofractionated radiation therapy for breast cancer. N Engl J Med 362 (6): 513-20, 2010.
  • Haviland JS, Owen JR, Dewar JA, et al.: The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol 14 (11): 1086-94, 2013.
  • Hickey BE, James ML, Lehman M, et al.: Fraction size in radiation therapy for breast conservation in early breast cancer. Cochrane Database Syst Rev 7: CD003860, 2016.
  • Whelan TJ, Olivotto IA, Parulekar WR, et al.: Regional Nodal Irradiation in Early-Stage Breast Cancer. N Engl J Med 373 (4): 307-16, 2015.
  • Poortmans PM, Collette S, Kirkove C, et al.: Internal Mammary and Medial Supraclavicular Irradiation in Breast Cancer. N Engl J Med 373 (4): 317-27, 2015.
  • Budach W, Bölke E, Kammers K, et al.: Adjuvant radiation therapy of regional lymph nodes in breast cancer - a meta-analysis of randomized trials- an update. Radiat Oncol 10: 258, 2015.
  • Ragaz J, Jackson SM, Le N, et al.: Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer. N Engl J Med 337 (14): 956-62, 1997.
  • Overgaard M, Hansen PS, Overgaard J, et al.: Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. Danish Breast Cancer Cooperative Group 82b Trial. N Engl J Med 337 (14): 949-55, 1997.
  • Fowble B, Gray R, Gilchrist K, et al.: Identification of a subgroup of patients with breast cancer and histologically positive axillary nodes receiving adjuvant chemotherapy who may benefit from postoperative radiotherapy. J Clin Oncol 6 (7): 1107-17, 1988.
  • Favourable and unfavourable effects on long-term survival of radiotherapy for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists' Collaborative Group. Lancet 355 (9217): 1757-70, 2000.
  • McGale P, Taylor C, Correa C, et al.: Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 383 (9935): 2127-35, 2014.
  • Taghian AG, Jeong JH, Mamounas EP, et al.: Low locoregional recurrence rate among node-negative breast cancer patients with tumors 5 cm or larger treated by mastectomy, with or without adjuvant systemic therapy and without radiotherapy: results from five national surgical adjuvant breast and bowel project randomized clinical trials. J Clin Oncol 24 (24): 3927-32, 2006.
  • Recht A, Come SE, Henderson IC, et al.: The sequencing of chemotherapy and radiation therapy after conservative surgery for early-stage breast cancer. N Engl J Med 334 (21): 1356-61, 1996.
  • Fisher B, Brown AM, Dimitrov NV, et al.: Two months of doxorubicin-cyclophosphamide with and without interval reinduction therapy compared with 6 months of cyclophosphamide, methotrexate, and fluorouracil in positive-node breast cancer patients with tamoxifen-nonresponsive tumors: results from the National Surgical Adjuvant Breast and Bowel Project B-15. J Clin Oncol 8 (9): 1483-96, 1990.
  • Wallgren A, Bernier J, Gelber RD, et al.: Timing of radiotherapy and chemotherapy following breast-conserving surgery for patients with node-positive breast cancer. International Breast Cancer Study Group. Int J Radiat Oncol Biol Phys 35 (4): 649-59, 1996.
  • Hickey BE, Francis DP, Lehman M: Sequencing of chemotherapy and radiotherapy for early breast cancer. Cochrane Database Syst Rev 4: CD005212, 2013.
  • Halyard MY, Pisansky TM, Dueck AC, et al.: Radiotherapy and adjuvant trastuzumab in operable breast cancer: tolerability and adverse event data from the NCCTG Phase III Trial N9831. J Clin Oncol 27 (16): 2638-44, 2009.
  • Lingos TI, Recht A, Vicini F, et al.: Radiation pneumonitis in breast cancer patients treated with conservative surgery and radiation therapy. Int J Radiat Oncol Biol Phys 21 (2): 355-60, 1991.
  • Paszat LF, Mackillop WJ, Groome PA, et al.: Mortality from myocardial infarction after adjuvant radiotherapy for breast cancer in the surveillance, epidemiology, and end-results cancer registries. J Clin Oncol 16 (8): 2625-31, 1998.
  • Rutqvist LE, Johansson H: Mortality by laterality of the primary tumour among 55,000 breast cancer patients from the Swedish Cancer Registry. Br J Cancer 61 (6): 866-8, 1990.
  • Darby SC, McGale P, Taylor CW, et al.: Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol 6 (8): 557-65, 2005.
  • Højris I, Overgaard M, Christensen JJ, et al.: Morbidity and mortality of ischaemic heart disease in high-risk breast-cancer patients after adjuvant postmastectomy systemic treatment with or without radiotherapy: analysis of DBCG 82b and 82c randomised trials. Radiotherapy Committee of the Danish Breast Cancer Cooperative Group. Lancet 354 (9188): 1425-30, 1999.
  • Nixon AJ, Manola J, Gelman R, et al.: No long-term increase in cardiac-related mortality after breast-conserving surgery and radiation therapy using modern techniques. J Clin Oncol 16 (4): 1374-9, 1998.
  • Giordano SH, Kuo YF, Freeman JL, et al.: Risk of cardiac death after adjuvant radiotherapy for breast cancer. J Natl Cancer Inst 97 (6): 419-24, 2005.
  • Harris EE, Correa C, Hwang WT, et al.: Late cardiac mortality and morbidity in early-stage breast cancer patients after breast-conservation treatment. J Clin Oncol 24 (25): 4100-6, 2006.
  • Meek AG: Breast radiotherapy and lymphedema. Cancer 83 (12 Suppl American): 2788-97, 1998.
  • Larson D, Weinstein M, Goldberg I, et al.: Edema of the arm as a function of the extent of axillary surgery in patients with stage I-II carcinoma of the breast treated with primary radiotherapy. Int J Radiat Oncol Biol Phys 12 (9): 1575-82, 1986.
  • Swedborg I, Wallgren A: The effect of pre- and postmastectomy radiotherapy on the degree of edema, shoulder-joint mobility, and gripping force. Cancer 47 (5): 877-81, 1981.
  • Powell S, Cooke J, Parsons C: Radiation-induced brachial plexus injury: follow-up of two different fractionation schedules. Radiother Oncol 18 (3): 213-20, 1990.
  • Boice JD, Harvey EB, Blettner M, et al.: Cancer in the contralateral breast after radiotherapy for breast cancer. N Engl J Med 326 (12): 781-5, 1992.
  • Storm HH, Andersson M, Boice JD, et al.: Adjuvant radiotherapy and risk of contralateral breast cancer. J Natl Cancer Inst 84 (16): 1245-50, 1992.
  • Fraass BA, Roberson PL, Lichter AS: Dose to the contralateral breast due to primary breast irradiation. Int J Radiat Oncol Biol Phys 11 (3): 485-97, 1985.
  • Taghian A, de Vathaire F, Terrier P, et al.: Long-term risk of sarcoma following radiation treatment for breast cancer. Int J Radiat Oncol Biol Phys 21 (2): 361-7, 1991.
  • Inskip PD, Stovall M, Flannery JT: Lung cancer risk and radiation dose among women treated for breast cancer. J Natl Cancer Inst 86 (13): 983-8, 1994.
  • Senkus E, Kyriakides S, Penault-Llorca F, et al.: Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 24 (Suppl 6): vi7-23, 2013.
  • Early Breast Cancer Trialists' Collaborative Group (EBCTCG): Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365 (9472): 1687-717, 2005.
  • Polychemotherapy for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists' Collaborative Group. Lancet 352 (9132): 930-42, 1998.
  • Pritchard KI, Shepherd LE, O'Malley FP, et al.: HER2 and responsiveness of breast cancer to adjuvant chemotherapy. N Engl J Med 354 (20): 2103-11, 2006.
  • Gennari A, Sormani MP, Pronzato P, et al.: HER2 status and efficacy of adjuvant anthracyclines in early breast cancer: a pooled analysis of randomized trials. J Natl Cancer Inst 100 (1): 14-20, 2008.
  • De Laurentiis M, Cancello G, D'Agostino D, et al.: Taxane-based combinations as adjuvant chemotherapy of early breast cancer: a meta-analysis of randomized trials. J Clin Oncol 26 (1): 44-53, 2008.
  • Henderson IC, Berry DA, Demetri GD, et al.: Improved outcomes from adding sequential Paclitaxel but not from escalating Doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol 21 (6): 976-83, 2003.
  • Mamounas EP, Bryant J, Lembersky B, et al.: Paclitaxel after doxorubicin plus cyclophosphamide as adjuvant chemotherapy for node-positive breast cancer: results from NSABP B-28. J Clin Oncol 23 (16): 3686-96, 2005.
  • Martin M, Pienkowski T, Mackey J, et al.: Adjuvant docetaxel for node-positive breast cancer. N Engl J Med 352 (22): 2302-13, 2005.
  • Perez EA: TAC--a new standard in adjuvant therapy for breast cancer? N Engl J Med 352 (22): 2346-8, 2005.
  • Sparano JA, Wang M, Martino S, et al.: Weekly paclitaxel in the adjuvant treatment of breast cancer. N Engl J Med 358 (16): 1663-71, 2008.
  • Citron ML, Berry DA, Cirrincione C, et al.: Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol 21 (8): 1431-9, 2003.
  • Hudis C, Citron M, Berry D, et al.: Five year follow-up of INT C9741: dose-dense (DD) chemotherapy (CRx) is safe and effective. [Abstract] Breast Cancer Research and Treatment 94 (Suppl 1): A-41, 2005.
  • Citron ML, Berry DA, Cirrincione C, et al.: Dose-dense (DD) AC followed by paclitaxel is associated with moderate, frequent anemia compared to sequential (S) and/or less DD treatment: update by CALGB on Breast Cancer Intergroup Trial C9741 with ECOG, SWOG, & NCCTG. [Abstract] J Clin Oncol 23 (Suppl 16): A-620, 33s, 2005.
  • Del Mastro L, De Placido S, Bruzzi P, et al.: Fluorouracil and dose-dense chemotherapy in adjuvant treatment of patients with early-stage breast cancer: an open-label, 2 × 2 factorial, randomised phase 3 trial. Lancet 385 (9980): 1863-72, 2015.
  • Petrelli F, Cabiddu M, Coinu A, et al.: Adjuvant dose-dense chemotherapy in breast cancer: a systematic review and meta-analysis of randomized trials. Breast Cancer Res Treat 151 (2): 251-9, 2015.
  • Early Breast Cancer Trialists' Collaborative Group (EBCTCG): Increasing the dose intensity of chemotherapy by more frequent administration or sequential scheduling: a patient-level meta-analysis of 37 298 women with early breast cancer in 26 randomised trials. Lancet 393 (10179): 1440-1452, 2019.
  • Blackwell K, Semiglazov V, Krasnozhon D, et al.: Comparison of EP2006, a filgrastim biosimilar, to the reference: a phase III, randomized, double-blind clinical study in the prevention of severe neutropenia in patients with breast cancer receiving myelosuppressive chemotherapy. Ann Oncol 26 (9): 1948-53, 2015.
  • Jones SE, Savin MA, Holmes FA, et al.: Phase III trial comparing doxorubicin plus cyclophosphamide with docetaxel plus cyclophosphamide as adjuvant therapy for operable breast cancer. J Clin Oncol 24 (34): 5381-7, 2006.
  • Jones S, Holmes FA, O'Shaughnessy J, et al.: Docetaxel With Cyclophosphamide Is Associated With an Overall Survival Benefit Compared With Doxorubicin and Cyclophosphamide: 7-Year Follow-Up of US Oncology Research Trial 9735. J Clin Oncol 27 (8): 1177-83, 2009.
  • Gagliato Dde M, Gonzalez-Angulo AM, Lei X, et al.: Clinical impact of delaying initiation of adjuvant chemotherapy in patients with breast cancer. J Clin Oncol 32 (8): 735-44, 2014.
  • Pritchard KI, Paterson AH, Paul NA, et al.: Increased thromboembolic complications with concurrent tamoxifen and chemotherapy in a randomized trial of adjuvant therapy for women with breast cancer. National Cancer Institute of Canada Clinical Trials Group Breast Cancer Site Group. J Clin Oncol 14 (10): 2731-7, 1996.
  • Shapiro CL, Manola J, Leboff M: Ovarian failure after adjuvant chemotherapy is associated with rapid bone loss in women with early-stage breast cancer. J Clin Oncol 19 (14): 3306-11, 2001.
  • Smith RE, Bryant J, DeCillis A, et al.: Acute myeloid leukemia and myelodysplastic syndrome after doxorubicin-cyclophosphamide adjuvant therapy for operable breast cancer: the National Surgical Adjuvant Breast and Bowel Project Experience. J Clin Oncol 21 (7): 1195-204, 2003.
  • Crump M, Tu D, Shepherd L, et al.: Risk of acute leukemia following epirubicin-based adjuvant chemotherapy: a report from the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 21 (16): 3066-71, 2003.
  • Praga C, Bergh J, Bliss J, et al.: Risk of acute myeloid leukemia and myelodysplastic syndrome in trials of adjuvant epirubicin for early breast cancer: correlation with doses of epirubicin and cyclophosphamide. J Clin Oncol 23 (18): 4179-91, 2005.
  • Schagen SB, Muller MJ, Boogerd W, et al.: Change in cognitive function after chemotherapy: a prospective longitudinal study in breast cancer patients. J Natl Cancer Inst 98 (23): 1742-5, 2006.
  • Peto R, Davies C, Godwin J, et al.: Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 379 (9814): 432-44, 2012.
  • Mehta RS: Dose-dense and/or metronomic schedules of specific chemotherapies consolidate the chemosensitivity of triple-negative breast cancer: a step toward reversing triple-negative paradox. J Clin Oncol 26 (19): 3286-8; author reply 3288, 2008.
  • Liedtke C, Mazouni C, Hess KR, et al.: Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26 (8): 1275-81, 2008.
  • Silver DP, Richardson AL, Eklund AC, et al.: Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol 28 (7): 1145-53, 2010.
  • Anders CK, Winer EP, Ford JM, et al.: Poly(ADP-Ribose) polymerase inhibition: "targeted" therapy for triple-negative breast cancer. Clin Cancer Res 16 (19): 4702-10, 2010.
  • Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al.: Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353 (16): 1659-72, 2005.
  • Cameron D, Piccart-Gebhart MJ, Gelber RD, et al.: 11 years' follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. Lancet 389 (10075): 1195-1205, 2017.
  • Romond EH, Perez EA, Bryant J, et al.: Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353 (16): 1673-84, 2005.
  • Perez E, Romond E, Suman V, et al.: Updated results of the combined analysis of NCCTG N9831 and NSABP B-31 adjuvant chemotherapy with/without trastuzumab in patiens with HER2-positive breast cancer. [Abstract] J Clin Oncol 25 (Suppl 18): 512, 6s, 2007.
  • Perez EA, Romond EH, Suman VJ, et al.: Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol 32 (33): 3744-52, 2014.
  • Slamon D, Eiermann W, Robert N, et al.: Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 365 (14): 1273-83, 2011.
  • Joensuu H, Kellokumpu-Lehtinen PL, Bono P, et al.: Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med 354 (8): 809-20, 2006.
  • Pivot X, Romieu G, Debled M, et al.: 6 months versus 12 months of adjuvant trastuzumab in early breast cancer (PHARE): final analysis of a multicentre, open-label, phase 3 randomised trial. Lancet 393 (10191): 2591-2598, 2019.
  • Mavroudis D, Saloustros E, Malamos N, et al.: Six versus 12 months of adjuvant trastuzumab in combination with dose-dense chemotherapy for women with HER2-positive breast cancer: a multicenter randomized study by the Hellenic Oncology Research Group (HORG). Ann Oncol 26 (7): 1333-40, 2015.
  • Earl HM, Hiller L, Vallier AL, et al.: 6 versus 12 months of adjuvant trastuzumab for HER2-positive early breast cancer (PERSEPHONE): 4-year disease-free survival results of a randomised phase 3 non-inferiority trial. Lancet 393 (10191): 2599-2612, 2019.
  • Tan-Chiu E, Yothers G, Romond E, et al.: Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol 23 (31): 7811-9, 2005.
  • Slamon D, Eiermann W, Robert N, et al.: BCIRG 006: 2nd interim analysis phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel (AC->T) with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab (AC->TH) with docetaxel, carboplatin and trastuzumab (TCH) in Her2neu positive early breast cancer patients. [Abstract] 29th Annual San Antonio Breast Cancer Symposium, December 14-17, 2006, San Antonio, Texas. A-52, 2006.
  • Piccart-Gebhart M, Holmes E, Baselga J, et al.: Adjuvant Lapatinib and Trastuzumab for Early Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer: Results From the Randomized Phase III Adjuvant Lapatinib and/or Trastuzumab Treatment Optimization Trial. J Clin Oncol 34 (10): 1034-42, 2016.
  • von Minckwitz G, Procter M, de Azambuja E, et al.: Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. N Engl J Med 377 (2): 122-131, 2017.
  • Chan A, Delaloge S, Holmes FA, et al.: Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 17 (3): 367-77, 2016.
  • Martin M, Holmes FA, Ejlertsen B, et al.: Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 18 (12): 1688-1700, 2017.
  • Burstein HJ, Temin S, Anderson H, et al.: Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: american society of clinical oncology clinical practice guideline focused update. J Clin Oncol 32 (21): 2255-69, 2014.
  • Pan H, Gray R, Braybrooke J, et al.: 20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years. N Engl J Med 377 (19): 1836-1846, 2017.
  • Colleoni M, Gelber S, Goldhirsch A, et al.: Tamoxifen after adjuvant chemotherapy for premenopausal women with lymph node-positive breast cancer: International Breast Cancer Study Group Trial 13-93. J Clin Oncol 24 (9): 1332-41, 2006.
  • Fisher B, Dignam J, Bryant J, et al.: Five versus more than five years of tamoxifen for lymph node-negative breast cancer: updated findings from the National Surgical Adjuvant Breast and Bowel Project B-14 randomized trial. J Natl Cancer Inst 93 (9): 684-90, 2001.
  • Stewart HJ, Prescott RJ, Forrest AP: Scottish adjuvant tamoxifen trial: a randomized study updated to 15 years. J Natl Cancer Inst 93 (6): 456-62, 2001.
  • Tormey DC, Gray R, Falkson HC: Postchemotherapy adjuvant tamoxifen therapy beyond five years in patients with lymph node-positive breast cancer. Eastern Cooperative Oncology Group. J Natl Cancer Inst 88 (24): 1828-33, 1996.
  • Davies C, Pan H, Godwin J, et al.: Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381 (9869): 805-16, 2013.
  • Albain KS, Barlow WE, Ravdin PM, et al.: Adjuvant chemotherapy and timing of tamoxifen in postmenopausal patients with endocrine-responsive, node-positive breast cancer: a phase 3, open-label, randomised controlled trial. Lancet 374 (9707): 2055-63, 2009.
  • Eisen A, Messersmith J, Franek M, et al.: Adjuvant ovarian ablation in the treatment of premenopausal women with early stage invasive breast cancer. Ontario, Canada: Cancer Care, 2010. Evidence-based Series # 1-9: Section 1. Available online. Last accessed October 3, 2019.
  • Adjuvant ovarian ablation versus CMF chemotherapy in premenopausal women with pathological stage II breast carcinoma: the Scottish trial. Scottish Cancer Trials Breast Group and ICRF Breast Unit, Guy's Hospital, London. Lancet 341 (8856): 1293-8, 1993.
  • Schmid P, Untch M, Kossé V, et al.: Leuprorelin acetate every-3-months depot versus cyclophosphamide, methotrexate, and fluorouracil as adjuvant treatment in premenopausal patients with node-positive breast cancer: the TABLE study. J Clin Oncol 25 (18): 2509-15, 2007.
  • Ejlertsen B, Mouridsen HT, Jensen MB, et al.: Similar efficacy for ovarian ablation compared with cyclophosphamide, methotrexate, and fluorouracil: from a randomized comparison of premenopausal patients with node-positive, hormone receptor-positive breast cancer. J Clin Oncol 24 (31): 4956-62, 2006.
  • Wolff AC, Davidson NE: Still waiting after 110 years: the optimal use of ovarian ablation as adjuvant therapy for breast cancer. J Clin Oncol 24 (31): 4949-51, 2006.
  • Boccardo F, Rubagotti A, Amoroso D, et al.: Cyclophosphamide, methotrexate, and fluorouracil versus tamoxifen plus ovarian suppression as adjuvant treatment of estrogen receptor-positive pre-/perimenopausal breast cancer patients: results of the Italian Breast Cancer Adjuvant Study Group 02 randomized trial. boccardo@hp380.ist.unige.it. J Clin Oncol 18 (14): 2718-27, 2000.
  • Winer EP, Hudis C, Burstein HJ, et al.: American Society of Clinical Oncology technology assessment on the use of aromatase inhibitors as adjuvant therapy for women with hormone receptor-positive breast cancer: status report 2002. J Clin Oncol 20 (15): 3317-27, 2002.
  • Tevaarwerk AJ, Wang M, Zhao F, et al.: Phase III comparison of tamoxifen versus tamoxifen plus ovarian function suppression in premenopausal women with node-negative, hormone receptor-positive breast cancer (E-3193, INT-0142): a trial of the Eastern Cooperative Oncology Group. J Clin Oncol 32 (35): 3948-58, 2014.
  • Francis PA, Regan MM, Fleming GF, et al.: Adjuvant ovarian suppression in premenopausal breast cancer. N Engl J Med 372 (5): 436-46, 2015.
  • Gnant M, Mlineritsch B, Stoeger H, et al.: Adjuvant endocrine therapy plus zoledronic acid in premenopausal women with early-stage breast cancer: 62-month follow-up from the ABCSG-12 randomised trial. Lancet Oncol 12 (7): 631-41, 2011.
  • Pagani O, Regan MM, Walley BA, et al.: Adjuvant exemestane with ovarian suppression in premenopausal breast cancer. N Engl J Med 371 (2): 107-18, 2014.
  • Bernhard J, Luo W, Ribi K, et al.: Patient-reported outcomes with adjuvant exemestane versus tamoxifen in premenopausal women with early breast cancer undergoing ovarian suppression (TEXT and SOFT): a combined analysis of two phase 3 randomised trials. Lancet Oncol 16 (7): 848-58, 2015.
  • Dowsett M, Forbes JF, Bradley R, et al.: Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. Lancet 386 (10001): 1341-52, 2015.
  • The ATAC Trialists' Group. Arimidex, tamoxifen alone or in combination: Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 359 (9324): 2131-9, 2002.
  • Howell A, Cuzick J, Baum M, et al.: Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years' adjuvant treatment for breast cancer. Lancet 365 (9453): 60-2, 2005.
  • Thürlimann B, Keshaviah A, Coates AS, et al.: A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med 353 (26): 2747-57, 2005.
  • Coates AS, Keshaviah A, Thürlimann B, et al.: Five years of letrozole compared with tamoxifen as initial adjuvant therapy for postmenopausal women with endocrine-responsive early breast cancer: update of study BIG 1-98. J Clin Oncol 25 (5): 486-92, 2007.
  • Boccardo F, Rubagotti A, Guglielmini P, et al.: Switching to anastrozole versus continued tamoxifen treatment of early breast cancer. Updated results of the Italian tamoxifen anastrozole (ITA) trial. Ann Oncol 17 (Suppl 7): vii10-4, 2006.
  • Jakesz R, Jonat W, Gnant M, et al.: Switching of postmenopausal women with endocrine-responsive early breast cancer to anastrozole after 2 years' adjuvant tamoxifen: combined results of ABCSG trial 8 and ARNO 95 trial. Lancet 366 (9484): 455-62, 2005 Aug 6-12.
  • Boccardo F, Rubagotti A, Aldrighetti D, et al.: Switching to an aromatase inhibitor provides mortality benefit in early breast carcinoma: pooled analysis of 2 consecutive trials. Cancer 109 (6): 1060-7, 2007.
  • Coombes RC, Hall E, Gibson LJ, et al.: A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer. N Engl J Med 350 (11): 1081-92, 2004.
  • Coombes RC, Kilburn LS, Snowdon CF, et al.: Survival and safety of exemestane versus tamoxifen after 2-3 years' tamoxifen treatment (Intergroup Exemestane Study): a randomised controlled trial. Lancet 369 (9561): 559-70, 2007.
  • van de Velde CJ, Rea D, Seynaeve C, et al.: Adjuvant tamoxifen and exemestane in early breast cancer (TEAM): a randomised phase 3 trial. Lancet 377 (9762): 321-31, 2011.
  • Regan MM, Neven P, Giobbie-Hurder A, et al.: Assessment of letrozole and tamoxifen alone and in sequence for postmenopausal women with steroid hormone receptor-positive breast cancer: the BIG 1-98 randomised clinical trial at 8·1 years median follow-up. Lancet Oncol 12 (12): 1101-8, 2011.
  • De Placido S, Gallo C, De Laurentiis M, et al.: Adjuvant anastrozole versus exemestane versus letrozole, upfront or after 2 years of tamoxifen, in endocrine-sensitive breast cancer (FATA-GIM3): a randomised, phase 3 trial. Lancet Oncol 19 (4): 474-485, 2018.
  • Goss PE, Ingle JN, Pritchard KI, et al.: Exemestane versus anastrozole in postmenopausal women with early breast cancer: NCIC CTG MA.27--a randomized controlled phase III trial. J Clin Oncol 31 (11): 1398-404, 2013.
  • Goss PE, Hershman DL, Cheung AM, et al.: Effects of adjuvant exemestane versus anastrozole on bone mineral density for women with early breast cancer (MA.27B): a companion analysis of a randomised controlled trial. Lancet Oncol 15 (4): 474-82, 2014.
  • Smith I, Yardley D, Burris H, et al.: Comparative Efficacy and Safety of Adjuvant Letrozole Versus Anastrozole in Postmenopausal Patients With Hormone Receptor-Positive, Node-Positive Early Breast Cancer: Final Results of the Randomized Phase III Femara Versus Anastrozole Clinical Evaluation (FACE) Trial. J Clin Oncol 35 (10): 1041-1048, 2017.
  • Goss PE, Ingle JN, Martino S, et al.: A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N Engl J Med 349 (19): 1793-802, 2003.
  • Bryant J, Wolmark N: Letrozole after tamoxifen for breast cancer--what is the price of success? N Engl J Med 349 (19): 1855-7, 2003.
  • Burstein HJ: Beyond tamoxifen--extending endocrine treatment for early-stage breast cancer. N Engl J Med 349 (19): 1857-9, 2003.
  • Goss PE, Ingle JN, Martino S, et al.: Randomized trial of letrozole following tamoxifen as extended adjuvant therapy in receptor-positive breast cancer: updated findings from NCIC CTG MA.17. J Natl Cancer Inst 97 (17): 1262-71, 2005.
  • Mamounas EP, Jeong JH, Wickerham DL, et al.: Benefit from exemestane as extended adjuvant therapy after 5 years of adjuvant tamoxifen: intention-to-treat analysis of the National Surgical Adjuvant Breast And Bowel Project B-33 trial. J Clin Oncol 26 (12): 1965-71, 2008.
  • Goss PE, Ingle JN, Pritchard KI, et al.: Extending Aromatase-Inhibitor Adjuvant Therapy to 10 Years. N Engl J Med 375 (3): 209-19, 2016.
  • Blok EJ, Kroep JR, Meershoek-Klein Kranenbarg E, et al.: Optimal Duration of Extended Adjuvant Endocrine Therapy for Early Breast Cancer; Results of the IDEAL Trial (BOOG 2006-05). J Natl Cancer Inst 110 (1): , 2018.
  • Mamounas EP, Bandos H, Lembersky BC, et al.: Use of letrozole after aromatase inhibitor-based therapy in postmenopausal breast cancer (NRG Oncology/NSABP B-42): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 20 (1): 88-99, 2019.
  • Colleoni M, Luo W, Karlsson P, et al.: Extended adjuvant intermittent letrozole versus continuous letrozole in postmenopausal women with breast cancer (SOLE): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 19 (1): 127-138, 2018.
  • Tjan-Heijnen VCG, van Hellemond IEG, Peer PGM, et al.: Extended adjuvant aromatase inhibition after sequential endocrine therapy (DATA): a randomised, phase 3 trial. Lancet Oncol 18 (11): 1502-1511, 2017.
  • Gnant M, Steger G, Greil R, et al.: A prospective randomized multi-center phase-III trial of additional 2 versus additional 5 years of anastrozole after initial 5 years of adjuvant endocrine therapy: results from 3,484 postmenopausal women in the ABCSG-16 trial. [Abstract] Cancer Res 78 (4 Suppl): A-GS3-01, 2018.
  • Coleman R, Powles T, Paterson A, et al.: Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet 386 (10001): 1353-61, 2015.
  • Gnant M, Pfeiler G, Steger GG, et al.: Adjuvant denosumab in postmenopausal patients with hormone receptor-positive breast cancer (ABCSG-18): disease-free survival results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 20 (3): 339-351, 2019.
  • Mauri D, Pavlidis N, Ioannidis JP: Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J Natl Cancer Inst 97 (3): 188-94, 2005.
  • Early Breast Cancer Trialists' Collaborative Group (EBCTCG): Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol 19 (1): 27-39, 2018.
  • Bear HD, Anderson S, Brown A, et al.: The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol 21 (22): 4165-74, 2003.
  • Smith IE, Dowsett M, Ebbs SR, et al.: Neoadjuvant treatment of postmenopausal breast cancer with anastrozole, tamoxifen, or both in combination: the Immediate Preoperative Anastrozole, Tamoxifen, or Combined with Tamoxifen (IMPACT) multicenter double-blind randomized trial. J Clin Oncol 23 (22): 5108-16, 2005.
  • Cortazar P, Zhang L, Untch M, et al.: Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384 (9938): 164-72, 2014.
  • Carlson RW, Allred DC, Anderson BO, et al.: Breast cancer. Clinical practice guidelines in oncology. J Natl Compr Canc Netw 7 (2): 122-92, 2009.
  • Boughey JC, Suman VJ, Mittendorf EA, et al.: Sentinel lymph node surgery after neoadjuvant chemotherapy in patients with node-positive breast cancer: the ACOSOG Z1071 (Alliance) clinical trial. JAMA 310 (14): 1455-61, 2013.
  • Kuehn T, Bauerfeind I, Fehm T, et al.: Sentinel-lymph-node biopsy in patients with breast cancer before and after neoadjuvant chemotherapy (SENTINA): a prospective, multicentre cohort study. Lancet Oncol 14 (7): 609-18, 2013.
  • Alvarado R, Yi M, Le-Petross H, et al.: The role for sentinel lymph node dissection after neoadjuvant chemotherapy in patients who present with node-positive breast cancer. Ann Surg Oncol 19 (10): 3177-84, 2012.
  • Lyman GH, Temin S, Edge SB, et al.: Sentinel lymph node biopsy for patients with early-stage breast cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 32 (13): 1365-83, 2014.
  • Smith IC, Heys SD, Hutcheon AW, et al.: Neoadjuvant chemotherapy in breast cancer: significantly enhanced response with docetaxel. J Clin Oncol 20 (6): 1456-66, 2002.
  • von Minckwitz G, Kümmel S, Vogel P, et al.: Intensified neoadjuvant chemotherapy in early-responding breast cancer: phase III randomized GeparTrio study. J Natl Cancer Inst 100 (8): 552-62, 2008.
  • Fisher B, Bryant J, Wolmark N, et al.: Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol 16 (8): 2672-85, 1998.
  • Fisher ER, Wang J, Bryant J, et al.: Pathobiology of preoperative chemotherapy: findings from the National Surgical Adjuvant Breast and Bowel (NSABP) protocol B-18. Cancer 95 (4): 681-95, 2002.
  • Rastogi P, Anderson SJ, Bear HD, et al.: Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol 26 (5): 778-85, 2008.
  • van der Hage JA, van de Velde CJ, Julien JP, et al.: Preoperative chemotherapy in primary operable breast cancer: results from the European Organization for Research and Treatment of Cancer trial 10902. J Clin Oncol 19 (22): 4224-37, 2001.
  • Vriens BE, Aarts MJ, de Vries B, et al.: Doxorubicin/cyclophosphamide with concurrent versus sequential docetaxel as neoadjuvant treatment in patients with breast cancer. Eur J Cancer 49 (15): 3102-10, 2013.
  • Untch M, Jackisch C, Schneeweiss A, et al.: Nab-paclitaxel versus solvent-based paclitaxel in neoadjuvant chemotherapy for early breast cancer (GeparSepto-GBG 69): a randomised, phase 3 trial. Lancet Oncol 17 (3): 345-56, 2016.
  • von Minckwitz G, Rezai M, Loibl S, et al.: Capecitabine in addition to anthracycline- and taxane-based neoadjuvant treatment in patients with primary breast cancer: phase III GeparQuattro study. J Clin Oncol 28 (12): 2015-23, 2010.
  • von Minckwitz G, Schneeweiss A, Loibl S, et al.: Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol 15 (7): 747-56, 2014.
  • Sikov WM, Berry DA, Perou CM, et al.: Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol 33 (1): 13-21, 2015.
  • Rastogi P, Buyse ME, Swain SM, et al.: Concurrent bevacizumab with a sequential regimen of doxorubicin and cyclophosphamide followed by docetaxel and capecitabine as neoadjuvant therapy for HER2- locally advanced breast cancer: a phase II trial of the NSABP Foundation Research Group. Clin Breast Cancer 11 (4): 228-34, 2011.
  • Untch M, Loibl S, Bischoff J, et al.: Lapatinib versus trastuzumab in combination with neoadjuvant anthracycline-taxane-based chemotherapy (GeparQuinto, GBG 44): a randomised phase 3 trial. Lancet Oncol 13 (2): 135-44, 2012.
  • Buzdar AU, Ibrahim NK, Francis D, et al.: Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J Clin Oncol 23 (16): 3676-85, 2005.
  • Untch M, Rezai M, Loibl S, et al.: Neoadjuvant treatment with trastuzumab in HER2-positive breast cancer: results from the GeparQuattro study. J Clin Oncol 28 (12): 2024-31, 2010.
  • Gianni L, Eiermann W, Semiglazov V, et al.: Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet 375 (9712): 377-84, 2010.
  • Gianni L, Eiermann W, Semiglazov V, et al.: Neoadjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): follow-up of a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol 15 (6): 640-7, 2014.
  • Buzdar AU, Suman VJ, Meric-Bernstam F, et al.: Fluorouracil, epirubicin, and cyclophosphamide (FEC-75) followed by paclitaxel plus trastuzumab versus paclitaxel plus trastuzumab followed by FEC-75 plus trastuzumab as neoadjuvant treatment for patients with HER2-positive breast cancer (Z1041): a randomised, controlled, phase 3 trial. Lancet Oncol 14 (13): 1317-25, 2013.
  • Gligorov J, Ataseven B, Verrill M, et al.: Safety and tolerability of subcutaneous trastuzumab for the adjuvant treatment of human epidermal growth factor receptor 2-positive early breast cancer: SafeHer phase III study's primary analysis of 2573 patients. Eur J Cancer 82: 237-246, 2017.
  • Ismael G, Hegg R, Muehlbauer S, et al.: Subcutaneous versus intravenous administration of (neo)adjuvant trastuzumab in patients with HER2-positive, clinical stage I-III breast cancer (HannaH study): a phase 3, open-label, multicentre, randomised trial. Lancet Oncol 13 (9): 869-78, 2012.
  • Jackisch C, Stroyakovskiy D, Pivot X, et al.: Subcutaneous vs Intravenous Trastuzumab for Patients With ERBB2-Positive Early Breast Cancer: Final Analysis of the HannaH Phase 3 Randomized Clinical Trial. JAMA Oncol 5 (5): e190339, 2019.
  • Gianni L, Pienkowski T, Im YH, et al.: Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol 13 (1): 25-32, 2012.
  • Baselga J, Bradbury I, Eidtmann H, et al.: Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet 379 (9816): 633-40, 2012.
  • Gianni L, Pienkowski T, Im YH, et al.: 5-year analysis of neoadjuvant pertuzumab and trastuzumab in patients with locally advanced, inflammatory, or early-stage HER2-positive breast cancer (NeoSphere): a multicentre, open-label, phase 2 randomised trial. Lancet Oncol 17 (6): 791-800, 2016.
  • Schneeweiss A, Chia S, Hickish T, et al.: Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Ann Oncol 24 (9): 2278-84, 2013.
  • Carey LA, Berry DA, Cirrincione CT, et al.: Molecular Heterogeneity and Response to Neoadjuvant Human Epidermal Growth Factor Receptor 2 Targeting in CALGB 40601, a Randomized Phase III Trial of Paclitaxel Plus Trastuzumab With or Without Lapatinib. J Clin Oncol 34 (6): 542-9, 2016.
  • de Azambuja E, Holmes AP, Piccart-Gebhart M, et al.: Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomised, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncol 15 (10): 1137-46, 2014.
  • Lenihan D, Suter T, Brammer M, et al.: Pooled analysis of cardiac safety in patients with cancer treated with pertuzumab. Ann Oncol 23 (3): 791-800, 2012.
  • Valachis A, Nearchou A, Polyzos NP, et al.: Cardiac toxicity in breast cancer patients treated with dual HER2 blockade. Int J Cancer 133 (9): 2245-52, 2013.
  • Eiermann W, Paepke S, Appfelstaedt J, et al.: Preoperative treatment of postmenopausal breast cancer patients with letrozole: A randomized double-blind multicenter study. Ann Oncol 12 (11): 1527-32, 2001.
  • Preece PE, Wood RA, Mackie CR, et al.: Tamoxifen as initial sole treatment of localised breast cancer in elderly women: a pilot study. Br Med J (Clin Res Ed) 284 (6319): 869-70, 1982.
  • Masuda N, Lee SJ, Ohtani S, et al.: Adjuvant Capecitabine for Breast Cancer after Preoperative Chemotherapy. N Engl J Med 376 (22): 2147-2159, 2017.
  • von Minckwitz G, Huang CS, Mano MS, et al.: Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N Engl J Med 380 (7): 617-628, 2019.
  • Impact of follow-up testing on survival and health-related quality of life in breast cancer patients. A multicenter randomized controlled trial. The GIVIO Investigators. JAMA 271 (20): 1587-92, 1994.
  • Rosselli Del Turco M, Palli D, Cariddi A, et al.: Intensive diagnostic follow-up after treatment of primary breast cancer. A randomized trial. National Research Council Project on Breast Cancer follow-up. JAMA 271 (20): 1593-7, 1994.
  • Khatcheressian JL, Wolff AC, Smith TJ, et al.: American Society of Clinical Oncology 2006 update of the breast cancer follow-up and management guidelines in the adjuvant setting. J Clin Oncol 24 (31): 5091-7, 2006.
  • 乳腺癌治疗(成人)(PDQ®)

    局部晚期或炎性乳腺癌

    局部晚期或炎性乳腺癌治疗方案概述

    根据现有证据,具有治疗意图的多模式治疗是局部晚期或炎性乳腺癌的治疗标准。

    局部晚期或炎性乳腺癌的标准治疗方案可能包括以下内容:

  • 保乳手术或全乳切除术加腋窝淋巴结清扫。
  • 化疗。
  • 放射疗法。
  • 激素治疗
  • 初始手术通常限于活检,以确定组织学类型、雌激素受体(ER)和孕激素受体状态以及人表皮生长因子受体2 (HER2/neu)的过表达情况。

    初始治疗的标准化疗方案与辅助治疗中使用的方案相同(更多信息参见本总结的术后全身治疗部分),尽管仅在局部晚期疾病患者中进行的试验并未显示出剂量密集化疗的统计学显著优势。

    对于对术前化疗有反应的患者,局部治疗可能包括全乳房切除术伴腋窝淋巴结清扫,随后对胸壁和区域淋巴管进行术后放疗。对术前化疗有良好的部分反应或完全反应的患者,可以考虑保乳治疗。

    随后的全身治疗可能包括进一步的化疗。激素治疗用于ER阳性或ER未知肿瘤的患者。

    虽然下面描述的证据还没有被重复出来,但是它表明局部晚期或炎症性乳腺癌患者应该以治疗为目的来接受治疗。

    证据(多模态治疗):

  • 在一项回顾性研究中,70例局部晚期乳腺癌和锁骨上转移患者接受了术前化疗。然后,在放射治疗之前或之后,患者接受局部治疗,包括全乳房切除术和腋窝淋巴结清扫术或保乳手术和腋窝淋巴结清扫术。术前化疗无效的患者接受手术和/或放射治疗。完成局部治疗后,化疗持续4至15个周期,然后进行放射治疗。
  • 大约32%的有同侧锁骨上淋巴结受累且无远处转移证据(pN3c)的患者,在联合治疗的情况下,无病生存期(DFS)延长10年。
  • 这些结果已经在不列颠哥伦比亚省的另一组病人中得到证实。
  • 对178例炎性乳腺癌患者接受了综合治疗。患者先接受新辅助化疗,然后接受局部治疗(放射治疗或乳房切除术),然后接受化疗,如果进行了乳房切除术,继续接受放射治疗。
  • [证据等级:3iiiDii]
  • 随后的试验已经证实,局部晚期和炎性乳腺癌患者在接受初始化疗时,可能会出现长期DFS。

    所有患者都被认为是临床试验的候选对象,以评估新综合疗法中各个组成部分的最合适的管理方案。

    当前临床试验

    使用我们的高级临床试验搜索来查找NCI支持的癌症临床试验,这些试验现在正在招募患者。可以通过试验地点、治疗类型、药物名称和其他标准来缩小搜索范围。关于临床试验的一般信息也是可用的。

    参考文献

  • Petrelli F, Coinu A, Lonati V, et al.: Neoadjuvant dose-dense chemotherapy for locally advanced breast cancer: a meta-analysis of published studies. Anticancer Drugs 27 (7): 702-8, 2016.
  • Berg CD, Swain SM: Results of Concomitantly Administered Chemoradiation for Locally Advanced Noninflammatory Breast Cancer. Semin Radiat Oncol 4 (4): 226-235, 1994.
  • Brito RA, Valero V, Buzdar AU, et al.: Long-term results of combined-modality therapy for locally advanced breast cancer with ipsilateral supraclavicular metastases: The University of Texas M.D. Anderson Cancer Center experience. J Clin Oncol 19 (3): 628-33, 2001.
  • Olivotto IA, Chua B, Allan SJ, et al.: Long-term survival of patients with supraclavicular metastases at diagnosis of breast cancer. J Clin Oncol 21 (5): 851-4, 2003.
  • Ueno NT, Buzdar AU, Singletary SE, et al.: Combined-modality treatment of inflammatory breast carcinoma: twenty years of experience at M. D. Anderson Cancer Center. Cancer Chemother Pharmacol 40 (4): 321-9, 1997.
  • Breast Cancer Treatment (Adult) (PDQ®)

    Locally Advanced or Inflammatory Breast Cancer

    Treatment Option Overview for Locally Advanced or Inflammatory Breast Cancer

    On the basis of the available evidence, multimodality therapy delivered with curative intent is the standard of care for patients with locally advanced or inflammatory breast cancer.

    The standard treatment options for locally advanced or inflammatory breast cancer may include the following:

  • Breast-conserving surgery or total mastectomy with axillary lymph node dissection.
  • Chemotherapy.
  • Radiation therapy.
  • Hormone therapy.
  • Initial surgery is generally limited to biopsy to permit the determination of histology, estrogen receptor (ER) and progesterone receptor levels, and human epidermal growth factor receptor 2 (HER2/neu) overexpression.

    The standard chemotherapy regimen for initial treatment is the same as that used in the adjuvant setting (refer to the Postoperative Systemic Therapy section of this summary for more information), although trials done solely in patients with locally advanced disease have not shown a statistically significant advantage to dose-dense chemotherapy.

    For patients who respond to preoperative chemotherapy, local therapy may consist of total mastectomy with axillary lymph node dissection followed by postoperative radiation therapy to the chest wall and regional lymphatics. Breast-conserving therapy can be considered for patients with a good partial or complete response to preoperative chemotherapy.

    Subsequent systemic therapy may consist of further chemotherapy. Hormone therapy is administered to patients with ER-positive or ER-unknown tumors.

    Although the evidence described below has not been replicated, it suggests patients with locally advanced or inflammatory breast cancer should be treated with curative intent.

    Evidence (multimodality therapy):

  • In a retrospective series, 70 patients with locally advanced breast cancer and supraclavicular metastases received preoperative chemotherapy. Patients then received local therapy that consisted of either total mastectomy and axillary lymph node dissection or breast-conserving surgery and axillary lymph node dissection before or after radiation therapy. Patients who did not respond to preoperative chemotherapy were treated with surgery and/or radiation therapy. After completion of local therapy, chemotherapy was continued for 4 to 15 cycles, followed by radiation therapy.
  • Approximately 32% of patients with ipsilateral supraclavicular node involvement and no evidence of distant metastases (pN3c) had prolonged disease-free survival (DFS) at 10 years with combined-modality therapy.
  • These results have been confirmed in a separate series of patients treated in British Columbia.
  • A series of 178 patients with inflammatory breast cancer were treated with a combined-modality approach. Patients were treated with induction chemotherapy, then local therapy (radiation therapy or mastectomy), followed by chemotherapy, and, if mastectomy was performed, radiation therapy.
  • [Level of evidence: 3iiiDii]
  • Subsequent trials have confirmed that patients with locally advanced and inflammatory breast cancer can experience long-term DFS when treated with initial chemotherapy.

    All patients are considered candidates for clinical trials to evaluate the most appropriate way to administer the various components of new multimodality regimens.

    Current Clinical Trials

    Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

    ReferenceSection

  • Petrelli F, Coinu A, Lonati V, et al.: Neoadjuvant dose-dense chemotherapy for locally advanced breast cancer: a meta-analysis of published studies. Anticancer Drugs 27 (7): 702-8, 2016.
  • Berg CD, Swain SM: Results of Concomitantly Administered Chemoradiation for Locally Advanced Noninflammatory Breast Cancer. Semin Radiat Oncol 4 (4): 226-235, 1994.
  • Brito RA, Valero V, Buzdar AU, et al.: Long-term results of combined-modality therapy for locally advanced breast cancer with ipsilateral supraclavicular metastases: The University of Texas M.D. Anderson Cancer Center experience. J Clin Oncol 19 (3): 628-33, 2001.
  • Olivotto IA, Chua B, Allan SJ, et al.: Long-term survival of patients with supraclavicular metastases at diagnosis of breast cancer. J Clin Oncol 21 (5): 851-4, 2003.
  • Ueno NT, Buzdar AU, Singletary SE, et al.: Combined-modality treatment of inflammatory breast carcinoma: twenty years of experience at M. D. Anderson Cancer Center. Cancer Chemother Pharmacol 40 (4): 321-9, 1997.
  • 乳腺癌治疗(成人)(PDQ®)

    局部复发性乳腺癌

    复发性乳腺癌通常对治疗有反应,尽管疾病在这个阶段很少能够治愈。局部乳腺癌复发的患者可以通过适当的治疗而长期存活。

    随着时间的推移,局部复发率已经降低,一项荟萃分析表明,接受保乳手术和放射治疗的患者复发率低于3%。

    对于接受乳房切除术治疗的患者,这一比率略高(高达10%)。

    9%至25%的局部复发患者在复发时会有远处转移或局部广泛病变。

    在治疗复发性乳腺癌之前,需要重新评估疾病的程度。应尽可能获得复发性病变的细胞学或组织学资料。当选择治疗时,考虑复发时和先前治疗时的雌激素受体(ER)状态、孕激素受体(PR)状态和人表皮生长因子受体2 (HER2/neu)状态(如果已知)。

    ER状态可能会在复发时发生变化。在癌症和白血病B组(MDA-MBDT-8081)的一项小型研究中,在复发时获取的活检标本中发现,36%原为激素受体阳性的肿瘤变为了受体阴性。

    本研究中的患者没有间歇治疗。如果雌激素受体和孕激素受体状态未知,那么在化疗或激素治疗选择上,复发部位、无病间期、对先前治疗的反应和绝经状态是有用的。

    局部复发性乳腺癌的治疗选择包括以下内容:

  • 化疗。
  • 激素治疗
  • 放射治疗
  • 手术。
  • 靶向治疗(如曲妥珠单抗)。
  • 局部复发的患者应考虑接受进一步的局部治疗(如乳房切除术)。在一个研究系列中,保乳术联合化疗后出现浸润性复发患者五年精确复发率为52%。

    治疗方案也取决于复发部位,如下所示:

  • 皮肤:一项三期随机研究表明,局部应用米替福新可以实现皮肤转移的局部控制;然而,这种药物目前在美国还没有上市。
  • [证据等级:1iiDiii]
  • 胸壁:乳房切除术后局部胸壁复发通常是疾病广泛播散的先兆,但在一部分患者中,它可能是唯一的复发部位。对于这部分患者,手术和/或放射治疗可能是治愈性的。
  • 胸壁复发灶小于3厘米,腋窝和内乳淋巴结复发(非锁骨上淋巴结,后者存活率较低),且复发前无病时间间隔超过2年的患者,最有可能延长生存期。
  • 此类患者的5年无病生存率(DFS)为25%,10年生存率为15%。
  • 10年局部控制率为57%。局部复发患者应考虑全身治疗。
  • 乳房:在作为局部复发乳腺癌辅助治疗的化疗(CALOR [NCT00074152)试验中,有保乳手术或乳房切除术史且切缘净,乳腺癌局部复发灶完全切除的患者被随机分配接受医生选择的化疗或不接受化疗。由于获益不良,研究提前结束。危险比(HR)为0.74的原始样本量为977名患者(347起DFS事件),随后修订为265名患者(HR,0.6;124例DFS事件),在研究结束时只有162例登记。
  • [证据等级:1iiDii]
  • 在ER-阴性患者中,化疗与未化疗的DFS比值为0.29 (95% CI,0.13-0.67;10年DFS,70%对34%),而在ER阳性患者中,HR为1.07 (95% CI,0.57-2.00;10年DFS,50%对59%)。化疗与ER状态在DFS方面的相互作用显著(P = .013)。
  • 该试验支持在ER阴性肿瘤患者中,完全切除孤立性局部复发乳腺癌后考虑辅助化疗。
  • (有关复发性转移性乳腺癌的治疗信息,请参考本摘要的转移性(全身性)疾病部分。)所有复发性乳腺癌患者都被认为是正在进行的临床试验的候选人。

    当前临床试验

    使用我们的高级临床试验搜索来查找NCI支持的癌症临床试验,这些试验现在正在招募患者。可以通过试验地点、治疗类型、药物名称和其他标准来缩小搜索范围。关于临床试验的一般信息也是可用的。

    参考文献

  • Darby S, McGale P, Correa C, et al.: Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 378 (9804): 1707-16, 2011.
  • Buchanan CL, Dorn PL, Fey J, et al.: Locoregional recurrence after mastectomy: incidence and outcomes. J Am Coll Surg 203 (4): 469-74, 2006.
  • Aberizk WJ, Silver B, Henderson IC, et al.: The use of radiotherapy for treatment of isolated locoregional recurrence of breast carcinoma after mastectomy. Cancer 58 (6): 1214-8, 1986.
  • Abner AL, Recht A, Eberlein T, et al.: Prognosis following salvage mastectomy for recurrence in the breast after conservative surgery and radiation therapy for early-stage breast cancer. J Clin Oncol 11 (1): 44-8, 1993.
  • Haffty BG, Fischer D, Beinfield M, et al.: Prognosis following local recurrence in the conservatively treated breast cancer patient. Int J Radiat Oncol Biol Phys 21 (2): 293-8, 1991.
  • Kuukasjärvi T, Kononen J, Helin H, et al.: Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol 14 (9): 2584-9, 1996.
  • Perry MC, Kardinal CG, Korzun AH, et al.: Chemohormonal therapy in advanced carcinoma of the breast: Cancer and Leukemia Group B protocol 8081. J Clin Oncol 5 (10): 1534-45, 1987.
  • Leonard R, Hardy J, van Tienhoven G, et al.: Randomized, double-blind, placebo-controlled, multicenter trial of 6% miltefosine solution, a topical chemotherapy in cutaneous metastases from breast cancer. J Clin Oncol 19 (21): 4150-9, 2001.
  • Schwaibold F, Fowble BL, Solin LJ, et al.: The results of radiation therapy for isolated local regional recurrence after mastectomy. Int J Radiat Oncol Biol Phys 21 (2): 299-310, 1991.
  • Halverson KJ, Perez CA, Kuske RR, et al.: Survival following locoregional recurrence of breast cancer: univariate and multivariate analysis. Int J Radiat Oncol Biol Phys 23 (2): 285-91, 1992.
  • Halverson KJ, Perez CA, Kuske RR, et al.: Isolated local-regional recurrence of breast cancer following mastectomy: radiotherapeutic management. Int J Radiat Oncol Biol Phys 19 (4): 851-8, 1990.
  • Aebi S, Gelber S, Anderson SJ, et al.: Chemotherapy for isolated locoregional recurrence of breast cancer (CALOR): a randomised trial. Lancet Oncol 15 (2): 156-63, 2014.
  • Wapnir IL, Price KN, Anderson SJ, et al.: Efficacy of Chemotherapy for ER-Negative and ER-Positive Isolated Locoregional Recurrence of Breast Cancer: Final Analysis of the CALOR Trial. J Clin Oncol 36 (11): 1073-1079, 2018.
  • Breast Cancer Treatment (Adult) (PDQ®)

    Locoregional Recurrent Breast Cancer

    Recurrent breast cancer is often responsive to therapy, although treatment is rarely curative at this stage of disease. Patients with locoregional breast cancer recurrence may become long-term survivors with appropriate therapy.

    The rates of locoregional recurrence have been reduced over time, and a meta-analysis suggests a recurrence rate of less than 3% in patients treated with breast-conserving surgery and radiation therapy.

    The rates are somewhat higher (up to 10%) for those treated with mastectomy.

    Nine percent to 25% of patients with locoregional recurrence will have distant metastases or locally extensive disease at the time of recurrence.

    Before treatment for recurrent breast cancer, restaging to evaluate the extent of disease is indicated. Cytologic or histologic documentation of recurrent disease is obtained whenever possible. When therapy is selected, the estrogen-receptor (ER) status, progesterone-receptor (PR) status, and human epidermal growth factor receptor 2 (HER2/neu) status at the time of recurrence and previous treatment are considered, if known.

    ER status may change at the time of recurrence. In a single small study by the Cancer and Leukemia Group B (MDA-MBDT-8081), 36% of hormone receptor–positive tumors were found to be receptor negative in biopsy specimens isolated at the time of recurrence.

    Patients in this study had no interval treatment. If ER and PR statuses are unknown, then the site(s) of recurrence, disease-free interval, response to previous treatment, and menopausal status are useful in the selection of chemotherapy or hormone therapy.

    Treatment options for locoregional recurrent breast cancer include the following:

  • Chemotherapy.
  • Hormone therapy.
  • Radiation therapy.
  • Surgery.
  • Targeted therapy (e.g., trastuzumab).
  • Patients with locoregional recurrence should be considered for further local treatment (e.g., mastectomy). In one series, the 5-year actuarial rate of relapse for patients treated for invasive recurrence after initial breast conservation and radiation therapy was 52%.

    Treatment options also depend on the site of recurrence, as follows:

  • Cutaneous: A phase III randomized study showed that local control of cutaneous metastases could be achieved with the application of topical miltefosine; however, the drug is not currently available in the United States.
  • [Level of evidence: 1iiDiii]
  • Chest wall: Local chest wall recurrence after mastectomy is usually the harbinger of widespread disease, but, in a subset of patients, it may be the only site of recurrence. For patients in this subset, surgery and/or radiation therapy may be curative.
  • Patients with chest wall recurrences of less than 3 cm, axillary and internal mammary node recurrence (not supraclavicular, which has a poorer survival), and a greater-than-2-year disease-free interval before recurrence have the best chance for prolonged survival.
  • The 5-year disease-free survival (DFS) rate in one series of such patients was 25%, with a 10-year rate of 15%.
  • The locoregional control rate was 57% at 10 years. Systemic therapy should be considered in patients with locoregional recurrence.
  • Breast: In the Chemotherapy as Adjuvant for Locally Recurrent Breast Cancer (CALOR [NCT00074152]) trial, patients with a history of breast-conserving surgery or mastectomy with clear margins and complete excision of an isolated local recurrence of their breast cancer were randomly assigned to receive either chemotherapy of the physician's choice or no chemotherapy. The study was closed early because of poor accrual. The original sample size for a hazard ratio (HR) of 0.74 was 977 patients (347 DFS events) and was revised subsequently to 265 patients (HR, 0.6; 124 DFS events), with only 162 enrolled at the time of study closure.
  • [Level of evidence: 1iiDii]
  • In ER-negative patients, the HR for DFS for chemotherapy versus no chemotherapy was 0.29 (95% CI, 0.13–0.67; 10 years DFS, 70% vs. 34%), whereas in ER-positive patients, the HR was 1.07 (95% CI, 0.57–2.00; 10 years DFS, 50% vs. 59%). The interaction between chemotherapy and ER status with respect to DFS was significant (P = .013).
  • This trial supports consideration of adjuvant chemotherapy after complete resection of isolated locoregional recurrence of breast cancer in patients with ER-negative tumors.
  • (Refer to the Metastatic (systemic) disease section of this summary for information about treatment for recurrent metastatic breast cancer.) All patients with recurrent breast cancer are considered candidates for ongoing clinical trials.

    Current Clinical Trials

    Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

    ReferenceSection

  • Darby S, McGale P, Correa C, et al.: Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 378 (9804): 1707-16, 2011.
  • Buchanan CL, Dorn PL, Fey J, et al.: Locoregional recurrence after mastectomy: incidence and outcomes. J Am Coll Surg 203 (4): 469-74, 2006.
  • Aberizk WJ, Silver B, Henderson IC, et al.: The use of radiotherapy for treatment of isolated locoregional recurrence of breast carcinoma after mastectomy. Cancer 58 (6): 1214-8, 1986.
  • Abner AL, Recht A, Eberlein T, et al.: Prognosis following salvage mastectomy for recurrence in the breast after conservative surgery and radiation therapy for early-stage breast cancer. J Clin Oncol 11 (1): 44-8, 1993.
  • Haffty BG, Fischer D, Beinfield M, et al.: Prognosis following local recurrence in the conservatively treated breast cancer patient. Int J Radiat Oncol Biol Phys 21 (2): 293-8, 1991.
  • Kuukasjärvi T, Kononen J, Helin H, et al.: Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol 14 (9): 2584-9, 1996.
  • Perry MC, Kardinal CG, Korzun AH, et al.: Chemohormonal therapy in advanced carcinoma of the breast: Cancer and Leukemia Group B protocol 8081. J Clin Oncol 5 (10): 1534-45, 1987.
  • Leonard R, Hardy J, van Tienhoven G, et al.: Randomized, double-blind, placebo-controlled, multicenter trial of 6% miltefosine solution, a topical chemotherapy in cutaneous metastases from breast cancer. J Clin Oncol 19 (21): 4150-9, 2001.
  • Schwaibold F, Fowble BL, Solin LJ, et al.: The results of radiation therapy for isolated local regional recurrence after mastectomy. Int J Radiat Oncol Biol Phys 21 (2): 299-310, 1991.
  • Halverson KJ, Perez CA, Kuske RR, et al.: Survival following locoregional recurrence of breast cancer: univariate and multivariate analysis. Int J Radiat Oncol Biol Phys 23 (2): 285-91, 1992.
  • Halverson KJ, Perez CA, Kuske RR, et al.: Isolated local-regional recurrence of breast cancer following mastectomy: radiotherapeutic management. Int J Radiat Oncol Biol Phys 19 (4): 851-8, 1990.
  • Aebi S, Gelber S, Anderson SJ, et al.: Chemotherapy for isolated locoregional recurrence of breast cancer (CALOR): a randomised trial. Lancet Oncol 15 (2): 156-63, 2014.
  • Wapnir IL, Price KN, Anderson SJ, et al.: Efficacy of Chemotherapy for ER-Negative and ER-Positive Isolated Locoregional Recurrence of Breast Cancer: Final Analysis of the CALOR Trial. J Clin Oncol 36 (11): 1073-1079, 2018.
  • 乳腺癌治疗(成人)(PDQ®)

    转移性乳腺癌

    转移性疾病的治疗是姑息性的。治疗的目标包括延长寿命和提高生活质量。尽管据报道总的中位生存期为18至24个月,

    存活率因亚型而异。在人表皮生长因子受体2 (HER2)阳性和激素受体阳性转移性乳腺癌患者中观察到的中位结果最长,在三阴性转移性乳腺癌患者中观察到的中位结果较差。

    转移性乳腺癌的治疗选择包括:

  • 激素治疗(他莫昔芬、芳香酶抑制剂)。
  • HER2靶向治疗。
  • CDK 4/6抑制剂。
  • mTOR抑制剂。
  • PIK3CA抑制剂。
  • 化疗。
  • 免疫治疗。
  • 手术,适用于有限转移症状的病人。
  • 放疗,适用于有限转移症状的病人。
  • 骨转移患者的骨修复治疗。
  • 在许多情况下,这些治疗是按顺序给予的,并以多种组合使用。

    应尽可能获得转移性疾病的细胞学或组织学资料,包括雌激素受体(ER)、孕激素受体(PR)和HER2状态的检测。

    所有转移性乳腺癌患者都被认为是正在进行的临床试验的候选人。

    激素受体阳性乳腺癌

    内分泌治疗和细胞周期蛋白依赖性激酶抑制剂治疗

    CDK4和CDK6与激素受体阳性乳腺癌的持续增殖有关,这种乳腺癌对内分泌治疗具有耐药性。美国食品和药物管理局(FDA)已批准CDK抑制剂在晚期激素受体阳性HER2阴性乳腺癌的一线和二线治疗中与内分泌治疗联合使用。目前有三种口服CDK4/6抑制剂:palbociclib、ribociclib和abemaciclib。

    总的来说,在内分泌治疗中加入CDK 4/6抑制剂与乳腺癌预后改善相关,一般来说,可以维持或改善生活质量。

    一线Palbociclib与内分泌治疗

    证据(一线Palbociclib和内分泌治疗):

  • PALOMA-2 (NCT01740427)证实了二期PALOMA-1试验的结果。
  • 该三期双盲试验比较了安慰剂加来曲唑与Palbociclib加来曲唑作为ER阳性绝经后晚期乳腺癌患者的初始治疗(n=666)。
  • 主要终点(研究者评估的无进展生存期[PFS)在Palbociclib加来曲唑组的中位PFS为24.8个月,而安慰剂加来曲唑组为14.5个月(危险比[HR),0.58;95% CI[CI],0.46–0.72;P<.001)。
  • [证据等级: 1iDiii]
  • 总体生存(OS)数据尚未成熟。
  • 接受Palbociclib治疗的患者出现更频繁的血细胞减少(在接受Palbociclib治疗的患者中,3-4级的患者占66.4%,而在接受安慰剂治疗的患者中,这一比例为1.4%)。其他常见的不良事件包括恶心、关节痛、疲劳和脱发。除中性粒细胞减少外,最常见的3-4级不良事件包括白细胞减少(24.8%对0%)、贫血(5.4%对1.8%)和疲劳(1.8%对0.5%)。
  • 一线Ribociclib与内分泌治疗

    另一种CDK4/6抑制剂Ribociclib也已在绝经后和绝经前激素受体阳性HER2阴性复发性或转移性乳腺癌患者的一线治疗中进行了试验。

    证据(一线Ribociclib和内分泌治疗):

  • 三期,安慰剂对照的MONALEESA-2试验(NCT01958021)随机分配了668名患者接受一线Ribociclib加来曲唑或安慰剂加来曲唑治疗。
  • 达到主要终点(研究者评估的PFS)。在243名患者出现疾病进展或死亡后,进行了预先计划的中期分析,随访的中位持续时间为15.3个月。18个月后,Ribociclib组的PFS率为63.0% (95% CI,54.6-70.3),安慰剂组为42.2% (95% CI,34.8-49.5)。
  • [证据等级: 1iDiii]
  • OS数据在发布时还不成熟。
  • 患者的不良事件包括:Ribociclib组中性粒细胞减少(74.3%)和安慰剂组中性粒细胞减少(5.2%)、恶心(51.5%和28.5%)、感染(50.3%和42.4%)、疲劳(36.5%和30.0%)和腹泻(35.0%和22.1%)。
  • 除血细胞减少外,这些事件大多为1-2级。
  • 59.3%的Ribociclib组患者和0.9%安的慰剂组患者出现3-4级中性粒细胞减少。
  • 发热性中性粒细胞减少率Ribociclib组为1.5%,安慰剂组为0%。
  • 与安慰剂组的0名患者相比,在Ribociclib组的9名患者(2.7%)中观察到了超过基线60毫秒的QTcF(根据弗里德里希亚公式校正心率的QT间期)间期增加。
  • 在激素受体阳性HER2阴性的复发或转移性绝经后乳腺癌患者中,也对Ribociclib与氟维司群联合进行了试验。MONALEESA-3 (NCT02422615)试验包括接受一线或二线治疗的患者。该第三阶段安慰剂对照试验以2:1的比例随机分配了726名患者接受Ribociclib加氟维司群或安慰剂加氟维司群。
  • 达到主要终点(研究者评估的PFS)。在进行PFS最终分析时,Ribociclib组的中位PFS为20.5个月,而安慰剂组为12.8个月(HR 0.593;95% CI 0.480-0.732;P<.001)。
  • [证据等级: 1iDiii]
  • Ribociclib组的OS高于对照组(HR,0.724;95% CI,0.568-0.924;P = .004).结果超过了预定的界值(P = .011 ),以获得更好的疗效。所有亚组的结果相似。
  • [证据等级:1iA]
  • 不良事件与CDK4/6抑制剂的其他研究相似。
  • 53.4%的Ribociclib组患者和0.0%的安慰剂组患者出现3-4级中性粒细胞减少。
  • 发热性中性粒细胞减少率Ribociclib组为1.0%,安慰剂组为0%。
  • 在6.5%的Ribociclib组患者和0.4%的安慰剂组患者中,观察到QTcF间期比基线增加超过60毫秒。
  • 在一项仅在绝经前或围绝经期接受他莫昔芬或非甾体类芳香酶抑制剂(AI)加戈舍瑞林治疗的妇女中进行的研究中,Ribociclib也在一线进行了评估。
  • 在MONALEESA-7 (NCT02278120)试验中,672名激素受体阳性HER2阴性的复发或转移性绝经前乳腺癌患者,他们没有接受疾病晚期的内分泌治疗,以1:1的比例被随机分配到Ribociclib或安慰剂组。
  • 达到主要终点(研究者评估的PFS)。在对PFS进行最终分析时,Ribociclib组的平均PFS为23.8个月,而安慰剂组为13.0个月(HR .55;95% CI,0.44-0.69;P<.0001)。
  • [证据等级:1iC]
  • OS是次要终点。与单独内分泌治疗相比,Ribociclib联合内分泌治疗与更长的OS相关(42个月OS,70.2%对46%;HR死亡,0.71;95%CI,0.54-0.95,P = .01)。
  • [证据等级:1iA]在接受AI加戈舍瑞林治疗的患者和接受他莫昔芬治疗的患者中均观察到生存获益,但在小得多的他莫昔芬组中,这一差异没有统计学意义。
  • 不良事件与CDK4/6抑制剂的其他研究相似。
  • 61%的Ribociclib组患者和4%的安慰剂组患者出现3-4级中性粒细胞减少。
  • Ribociclib组的发热性中性粒细胞减少率为2.0%,安慰剂组为1.0%。
  • 10.0 %的Ribociclib组患者和2.0%的安慰剂组患者的QTcF间期比基线增加了60毫秒以上。在接受他莫昔芬治疗的患者中,60毫秒的增加更为常见(Ribociclib 16%,安慰剂 7%)。
  • 一线abemaciclib和内分泌治疗

    另一种CDK4/6抑制剂Abemaciclib也已在绝经后激素受体阳性HER2阴性复发或转移性乳腺癌患者的一线治疗中进行了试验。

    证据(一线Abemaciclib和内分泌治疗):

  • MONAR 3(NCT 02246621)是一项随机、双盲、三期临床试验,对493名激素受体阳性HER2阴性的晚期绝经后乳腺癌妇女进行了一线Abemaciclib或安慰剂加非甾体类AI药物的评估。
  • 达到了主要终点,即研究者评估的PFS。中位随访时间为17.8个月后,Abemaciclib组未达到PFS,安慰剂组在14.7个月时达到PFS(HR,0.54;95% CI,0.41-0.72;P = .000021)。
  • OS数据尚未成熟。
  • Aemaciclib的副作用与其他CDK4/6抑制剂不同,腹泻是其最常见的不良反应,尽管大多数腹泻病例为1级。
  • 中性粒细胞减少症在Abemaciclib组更常见;然而,只有21.1%的受试者出现了3-4级中性粒细胞减少症。
  • 二线Palbociclib与内分泌治疗

    证据(二线Palbociclib与内分泌治疗)

  • PALOMA-3 (NCT01942135)是一项双盲、三期临床试验,521名激素受体阳性、HER2/neu阴性的晚期乳腺癌患者在前期内分泌治疗后复发或进展,并被随机分配接受氟维司群加安慰剂或氟维司群加Palbociclib。绝经前和绝经后患者均符合条件。绝经前患者同时接受戈舍瑞林。
  • [证据等级:1iC]
  • 最终PFS分析显示,Palbociclib-氟维司群组的平均PFS为9.5个月,而安慰剂-氟维司群组为4.6个月(HR,0.46;95% CI,0.36-0.59;P<.0001)。
  • [证据等级:1iC]
  • 在含Palbociclib的组中,细胞减少症,尤其是中性粒细胞减少症更为常见,但发热性中性粒细胞减少症在两组中非常罕见(1%)。接受Palbociclib治疗的患者更容易出现疲劳、恶心和头痛。
  • 在310名患者死亡后,对OS进行了预先指定的分析。发现有6.9个月的中位OS差异,支持Palbociclib-氟维司群组(34.9个月对28.0个月),但未达到统计学意义(HR,0.81;95% CI,0.64-1.03,P=.09)。
  • 在一项预先计划的亚组分析中,在已证明对激素治疗敏感的患者中观察到OS改善(HR,0.72;95% CI,0.55-0.94),而在无敏感性的患者中,Palbociclib组的OS没有改善(HR,1.14;95% CI,0.71-1.84;交互作用P=.12)。
  • 二线Ribociclib与内分泌治疗

    MONALEESA-3试验包括接受二线治疗的患者。(有关更多信息,请参考上面关于一线Ribociclib和内分泌治疗的证据。)

    二线Abemaciclib与内分泌治疗

    证据:

  • MONTRAL 2(NCT 02107703)研究在一项三期安慰剂对照试验中测试了abemaciclib (CDK4/6抑制剂),该试验随机将669名激素受体阳性和HER2阴性的晚期乳腺癌患者(先前在内分泌治疗方面有进展)分配到接受abemaciclib加氟维司群或安慰剂加氟维司群的组。
  • 达到主要终点(研究者评估PFS),随访的中位持续时间为19.5个月。Abemaciclib-氟维司群组的中位PFS为16.4个月,而安慰剂-氟维司群组为9.3个月(HR,0.55;95% CI,0.45-0.68;P<.001)。
  • [证据等级:1iDiii]
  • OS数据已经成熟,表明接受Abemaciclib治疗的患者的OS有所改善,显示Abemaciclib加氟维司群的中位OS为46.7个月,而安慰剂组为37.3个月(HR,0.757;95% CI,0.606-0.945;P=.01)。
  • [证据等级:1iA]
  • 不良反应事件包括:Abemaciclib组腹泻(86.4%)和安慰剂组腹泻(24.7%)、中性粒细胞减少(46%和4%)、恶心(45.1%和22.9%)、疲劳(39.9%和26.9%)和腹痛(35.4%和15.7%)。
  • 这些不良反应事件大多是1至2级。1-2级腹泻发生在73%的Abemaciclib组患者和24.2%的安慰剂组患者中。根据研究报告,抗腹泻药物在大多数情况下可有效地控制症状。
  • 3级腹泻发生在13.4%的abemaciclib组患者和0.4%的安慰剂组患者中。无4级腹泻报告。
  • 3-4级中性粒细胞减少症发生在25.5%的abemaciclib组患者和1.7%的安慰剂组患者中。据报道,6名患者出现了发热性中性粒细胞减少症。
  • 单药细胞周期蛋白依赖性激酶抑制剂治疗

    证据(单药细胞周期蛋白依赖性激酶抑制剂治疗):

  • 基于MONAR 1(NCT 02102490)试验的结果,FDA批准将单剂Abemaciclib用于激素受体阳性、HER2阴性的乳腺癌,疾病在内分泌治疗和化疗期间或之后进展。
  • Abemaciclib是唯一被批准作为单一药物的CDK4/6抑制剂。MONAR 1是对132名激素受体阳性HER2阴性的晚期乳腺癌患者进行的单剂Abemaciclib的单臂二期研究,这些患者至少在一线内分泌治疗和至少二线前期化疗中有进展。研究人群经过大量预处理,大多数受试者患有内脏疾病。排除曾经服用过CDK抑制剂的患者。
  • 主要终点,研究者评估的客观反应率,在12个月时为19.7%(95% CI,13.3-27.5%)。
  • 临床获益率为42.4%。
  • 中位PFS为6.0个月(95% CI,4.2-7.5个月)。
  • 最常见的不良事件是腹泻,90.2%的受试者出现腹泻。然而,大多数是1至2级,只有19.7%的受试者出现3级腹泻。没有4级腹泻。
  • 97.7%的受试者出现中性粒细胞减少;然而,大多数是1-2级,只有26.9%的受试者出现了3-4级中性粒细胞减少症。
  • 哺乳动物雷帕霉素靶蛋白(mTOR)抑制剂治疗加内分泌治疗

    临床前模型和临床研究表明,mTOR抑制剂可能会克服内分泌耐药。

    证据(mTOR抑制剂治疗):

  • 口服依维莫司的乳腺癌试验(BOLERO-2 [NCT00863655)是一项三期随机对照安慰剂试验,其中激素受体阳性的转移性乳腺癌患者耐受非甾体类芳香化酶抑制剂,随机分配应用mTOR抑制剂依维莫司加依西美坦或安慰剂加依西美坦。
  • [证据等级: 1iDiii]
  • 在中期分析中,依维莫司加依西美坦的中位PFS为6.9个月,安慰剂加依西美坦的中位PFS为2.8个月(HR,0.43;95% CI,0.35-0.54;P<.001)。
  • 依西美坦中加入依维莫司比安慰剂加依西美坦毒性更大,最常见的3级或4级不良事件为口腔炎(8%对1%)、贫血(6%对 <1%)、呼吸困难(4%对1%)、高血糖(4%对 < 1%)、疲劳(4%对1%)和肺炎(3%对0%)。
  • 进一步随访后,OS差异不显著。
  • TAMRAD (NCT01298713)是一项二期开放性随机试验,比较了在接受AI辅助治疗后疾病进展或转移性绝经后女性服用他莫昔芬和他莫昔芬加依维莫司的疗效。该试验随机分配57名妇女接受他莫昔芬治疗,54名妇女接受联合治疗。
  • 联合用药组的中位进展时间为8.6个月,他莫昔芬组为4.5个月(HR, 0.54;95% CI,0.56-0.81;P=.002)。
  • 依维莫司组的毒性更大,与BOLERO2试验结论相似。
  • 在一项探索性分析中,他莫昔芬组的OS为32.9个月,而联合用药组的OS未达到(HR,0.45;95% CI,0.24-0.81;P=.007)。
  • [证据等级:1iA]
  • PrE0102 (NCT01797120)是一项随机双盲二期试验,比较了在接受AI辅助治疗后疾病进展或转移性绝经后女性服用氟维司群和氟维司群加依维莫司的疗效。66名女性被随机分配到联合组,65名女性被单独分配到氟维司群组。
  • 联合组的中位PFS为10.3个月,单独组为5.1个月(HR,0.61;95% CI,0.40-0.92;P = .02)。
  • [证据等级: 1iiA]
  • 毒性与以前的研究相似。
  • 两组之间的OS没有观察到差异。
  • SWISH试验(NCT02069093)是一项评估地塞米松口服溶液(每5毫升0.5毫克)预防接受依西美坦加依维莫司治疗的女性口腔炎的疗效的单臂试验。
  • 在本研究中,85名可评估患者中2级或更严重口腔炎的发生率为2%,而在BOLERO-2试验中为33%。
  • Alpelisib 加内分泌治疗

    在大约40%的激素受体阳性和HER2阴性乳腺癌中发现PIK3CA激活突变。Alpelisib是一种α-特异性PI3K抑制剂。

    证据(alpelisib加内分泌治疗):

  • SOLAR-1 (NCT02437318)是一项三期随机临床试验,对572名接受过内分泌治疗的激素受体阳性和HER2阴性的晚期绝经后乳腺癌女性进行了Alpelisib加氟维司群与安慰剂加氟维司群的比较。
  • [证据等级:1iiDiii]
  • 在341名受试者中证实了PIK3CA突变。主要终点是PIK3CA突变患者队列中的PFS。

  • 在该队列中,alpelisib加氟维司群组的中位PFS为11个月,而安慰剂加氟维司群组为5.7个月(HRprogression或HRdeath,0.65;95% CI,0.50-0.85;P<.001)。
  • 在没有PIK3CA突变的受试者队列中,各组之间的PFS没有差异(中位数PFS,在alpel sib+fulvestant组为7.4个月,在安慰剂+fulvestant组为5.6个月)。
  • PIK3CA突变队列中的OS是次要终点。OS数据尚未成熟。
  • 非常少有研究受试者曾接受过CDK4/6抑制剂治疗。
  • 与alpelisib相关的常见毒性包括高血糖、腹泻、恶心、厌食和皮疹。在使用alpelisib期间,需要仔细监测和管理高血糖症。
  • 经FDA批准,在接受内分泌治疗后,alpelisib可与氟维司群联合用于晚期PIK3CA突变、激素受体阳性、HER2阴性乳腺癌。

  • 在三期双盲、安慰剂对照试验BOLERO-3 (NCT01007942)中显示了HER2阳性乳腺癌中mTOR抑制剂活性的证据。
  • [证据等级: 1iDiii]在BOLERO-3试验中,569例HER2阳性、曲妥珠单抗耐药的乳腺癌患者,他们以前接受过紫杉烷治疗,被随机分配接受依维莫司加曲妥珠单抗加长春瑞滨,或安慰剂加曲妥珠单抗加长春瑞滨。
  • 在中位随访20.2个月时,依维莫司组的中位PFS为7.0个月,而安慰剂组为5.78个月(HR,0.78;95%,CI,0.65-0.95;P=.0067)。
  • 依维莫司组报告了117例(42%)严重不良事件,安慰剂组报告了55例(20%)严重不良事件。
  • 该试验的最终OS结果尚未报告。
  • 单独内分泌治疗

    如上所述,由于靶向治疗和内分泌治疗联合应用可带来PFS和OS的优势,所以单纯内分泌治疗不太常用,尤其是在一线治疗中。然而,在选择的病例中,在靶向治疗进展后的一线治疗和后期治疗中,以及在仍认为存在内分泌敏感疾病的病例中使用化疗前,它的使用仍然是合适的。

    常用的单剂内分泌治疗包括他莫昔芬、非甾体类AI(来曲唑、阿那曲唑)、甾体类抗AI(依西美坦)和氟维司群。总的来说,患有转移性乳腺癌的绝经前女性会经历卵巢抑制或切除,之后与绝经后女性采用相同的方式治疗。

    他莫昔芬和AI治疗

    虽然他莫昔芬多年来一直用于治疗绝经后女性新发转移的ER阳性、PR阳性或ER/PR未知的乳腺癌,但一些随机试验表明,与他莫昔芬相比,AI的具有相当的或更优的反应率和PFS。

    [证据等级:1iiDiii]

    证据(他莫昔芬和AI治疗):

  • 一项荟萃分析评估了转移性疾病患者,这些患者被随机分配接受AI作为第一或第二种激素治疗,或标准治疗(他莫昔芬或孕激素)。
  • [证据等级:1iA]
  • 接受AI作为转移性乳腺癌的第一或第二激素治疗并被随机分配接受第三代药物(阿那曲唑、来曲唑、依西美坦或沃罗唑)的患者存活更久(HRdeath,0.87;95%,CI,0.82-0.93),高于接受标准治疗(他莫昔芬或孕激素)的患者。
  • 氟维司群

    氟维司群是一种选择性的雌激素受体拮抗剂,已经在晚期或转移性女性乳腺癌患者的一线和二线治疗中得到研究。

    一线氟维司群

    证据(一线氟维司群):

  • FALCON (NCT01602380)是一项三期双盲随机试验,对未接受过内分泌治疗的晚期或转移性受体阳性乳腺癌患者进行了氟维司群(500 mg)和阿那曲唑(1 mg)的比较。
  • 该试验随机分配230名患者接受氟维司群治疗,232名患者接受阿那曲唑治疗。
  • 氟维司群和阿那曲唑组的中位PFS分别为16.6个月和13.8个月(HR,0.797;95%,CI,0.637-0.999;P=.049)。
  • [证据等级:1iDiii]
  • 两组不良事件的发生频率相似,生活质量无差异。
  • OS结果未报告。
  • 二线氟维司群

    证据(二线富维斯塔特):

  • 两项随机试验招募了400名和451名患者,他们的疾病在接受他莫昔芬治疗后有所进展,试验表明,就对PFS的影响而言,氟维司群产生的结果与阿那曲唑相似。
  • 这些疗法的正确顺序尚不清楚。
  • EFECT (NCT00065325)是一项三期双盲随机试验,该试验比较了服用负荷剂量方案(500 mg第0天、250 mg第14天和28天以及此后每28天服用(250 mg)的氟维司坦与依西美坦(25 mg)的女性患者的疗效,这些女性患者在之前的非甾体类药物AI(阿那曲唑或来曲唑)治疗后出现了疾病进展。
  • 该试验随机分配351名妇女接受氟维司群治疗,342名妇女接受依西美坦治疗。
  • 两组中位进展时间为3.7个月(HR,0.93;95%, CI,0.819-1.133;P=.65)。
  • [证据等级:1iDiii]
  • 两组不良事件的发生频率相似,生活质量无差异。
  • OS结果未报告。
  • CONFIRM (NCT00099437)是一项三期双盲试验,对736名在先前内分泌治疗中病情有所进展的女性患者进行了两种剂量的氟维司群(500毫克 vs 250毫克,每个剂量在一个负荷剂量方案中给药)的比较。
  • PFS在高剂量组明显更好(HR,0.80;95%, CI,0.68-0.94;P=.006)。
  • [证据等级: 1iDiii]
  • 两组患者的不良事件和生活质量相似。
  • AI和氟维司群联合内分泌治疗

    在两项试验中发现了相互矛盾的结果,这两项试验比较了在激素受体阳性的绝经后复发或转移性乳腺癌患者的一线治疗中联合使用抗雌激素氟维司群(有关该药物的更多信息,请参阅氟维司群一节)和单独使用阿那曲唑与阿那曲唑。

    在这两项研究中,在第一天以500毫克负荷剂量给予氟维司群;第15和29天服用250毫克,此后每月服用一次;此外,每天服用1毫克阿那曲唑。西南肿瘤集团(SWOG)试验包括了更多患有转移性乳腺癌的患者;氟维司群和阿那曲唑联合治疗(FACT [NCT00256698])研究招募了更多以前接受过他莫昔芬治疗的患者。

    证据(AI和氟维司群联合内分泌治疗):

  • SWOG试验(SWOG-0226 [NCT00075764)招募了707名患者,显示了PFS的统计学显著差异(HR,0.80;95% CI,0.68-0.94;P=.007)和OS(HR,0.81;95% CI,0.65-1.00;P=.05)。
  • [证据等级:1iA]
  • 在5年以上随访后进行的分析中,观察到的联合治疗的获益仍然存在,并且与OS相关的显著性水平更高(HR,0.82;95%CI,0.69-0.98;P=.03)。
  • [证据等级:1iA]
  • 相比之下,FACT试验招募了514名患者,发现两者在无病生存率(DFS)方面没有差异(HR,0.99;95%CI,0.81-1.20;P=.91)或OS(HR,1.0;95%CI,0.76-1.32;P=1.00)。
  • [证据级别:1iA]
  • 激素受体阳性转移性乳腺癌的序贯治疗

    激素受体阳性转移性乳腺癌的最佳治疗顺序尚不清楚。一般来说,在没有内脏危象的情况下,大多数患者在过渡到化疗前接受基于内分泌的序贯治疗方案。在上述PFS和OS改善的基础上,一线治疗中的CDK4/6抑制剂治疗和内分泌治疗相结合是一个合适的选择。

    激素受体阴性乳腺癌

    激素受体阴性乳腺癌的治疗方法是化疗。(更多信息请参阅本总结的化疗部分。)

    HER2/neu阳性乳腺癌

    针对HER2途径的抗体治疗自20世纪90年代开始应用,并彻底改变了HER2阳性转移性乳腺癌的治疗方法。几种HER2靶向药物(如曲妥珠单抗、帕妥珠单抗、曲妥珠单抗-emtansine偶联物、拉帕替尼)已被批准用于治疗本病。

    单克隆抗体治疗

    曲妥珠单抗

    大约20%到25%的乳腺癌过表达HER2/neu。

    曲妥珠单抗是一种人源化单克隆抗体,可与HER2/neu受体结合。

    在先前接受过细胞毒性化疗且肿瘤过表达HER2/neu的患者中,单用曲妥珠单抗治疗的缓解率为21%。

    [证据级别:3iiiDiv]

    证据(曲妥珠单抗):

  • 在III期试验中,转移性乳腺癌患者随机分配接受单独化疗(多柔比星和环磷酰胺或紫杉醇)或同样的化疗加曲妥珠单抗。
  • [证据级别:1iiA]
  • 化疗加曲妥珠单抗治疗的患者比单纯化疗的患者OS有优势(25.1个月对20.3个月,P=0.05)。
  • [证据级别:1iiA]
  • 值得注意的是,当与多柔比星联合使用时,曲妥珠单抗具有显著的心脏毒性。

    比较多药化疗加曲妥珠单抗与单药化疗的临床试验产生了相互矛盾的结果。

  • 在一项转移性乳腺癌患者接受曲妥珠单抗、紫杉醇和卡铂治疗的随机研究中,与单用曲妥珠单抗和紫杉醇治疗的患者相比,患者对联合用药耐受性好,并且有更长的疾病进展时间。
  • [证据级别:1iDiii]
  • 乳腺癌国际研究组的III期试验(BCIRG-007[NCT00047255])显示,在OS、疾病进展时间或缓解率方面没有差异,该试验比较了卡铂和多西他赛联合曲妥珠单抗和多西他赛联合曲妥珠单抗作为转移性HER2过表达乳腺癌的一线化疗。
  • [证据级别:1iiA]
  • 临床试验之外,转移性HER2过表达乳腺癌的标准一线治疗是单药化疗加曲妥珠单抗。

    帕妥珠单抗

    帕妥珠单抗是一种人源化单克隆抗体,与曲妥珠单抗相比,它可以结合到HER2胞外结构域的不同表位。帕妥珠单抗与HER2的结合阻止了与其他配体激活的HER受体的二聚作用,最显著的是HER3。

    证据(帕妥珠单抗):

  • III期CLEOPATRA(NCT 00567190)试验评估了在一线HER2阳性转移情况下,帕妥珠单抗加曲妥珠单抗加多西他赛与安慰剂加曲妥珠单抗加多西他赛的疗效和安全性。
  • [证据级别:1iA]
  • 中位随访50个月,对照组的中位OS为40.8个月,而帕妥珠单抗组为56.5个月(HR支持帕妥珠单抗组,0.68;95%CI,0.56–0.84;P<0.001)。通过添加帕妥珠单抗(HR,0.68;95%CI,0.58–0.80),每位研究者的平均PFS评估提高了6.3个月。
  • 帕妥珠单抗组的中位OS为56.5个月,安慰剂组为40.8个月(HR为0.68;95%CI为0.57-0.84;P<0.001)。
  • 两个治疗组的毒性特征相似,在帕妥珠单抗联合用药组中未见心脏毒性作用增加。
  • 曲妥珠单抗-美坦新偶联物

    曲妥珠单抗-美坦新偶联物(T-DM1)是一种结合曲妥珠单抗HER2靶向抗肿瘤特性和微管抑制剂DM1细胞毒活性的抗体药物结合物。T-DM1使特异性的细胞内药物传递到HER2过表达的细胞,有可能提高治疗指数,减少正常组织的暴露。

    证据(T-DM1):

  • III期EMILIA或TDM4370g(NCT00829166)研究是一项随机开放性试验,共纳入991例HER2过表达、不能切除、局部晚期或转移性乳腺癌患者,这些患者以前曾接受曲妥珠单抗和紫杉烷治疗。
  • [证据级别:1iiA]患者被随机分配接受T-DM1或拉帕替尼加卡培他滨治疗。
  • T-DM1组中位PFS为9.6个月,而拉帕替尼加卡培他滨组为6.4个月(HR,0.65;95%CI,0.55-0.77;P<0.001)。
  • 曲妥珠单抗-美坦新偶联物组比拉帕替尼加卡培他滨组的平均OS更长(29.9个月 vs 25.9个月;HR为0.75[95%CI为0.64-0.88])。
  • 接受T-DM1治疗的患者血小板减少和血清转氨酶升高的发生率较高,而接受拉帕替尼联合卡培他滨治疗的患者腹泻、恶心、呕吐和掌跖综合征的发生率较高。
  • 转移性HER2过表达乳腺癌中T-DM1活性的进一步证据显示在T-DM1与曲妥珠单抗加多西他赛的随机II期研究中。
  • [证据级别:1iiDiii]这项试验随机分配了137例HER2过表达的乳腺癌一线转移患者。
  • 在14个月的中位随访中,曲妥珠单抗加多西他赛组的中位PFS为9.2个月,T-DM1组的中位PFS为14.2个月(HR,0.59;95%CI,0.36-0.97)。
  • 治疗组的初步OS结果相似。
  • 与曲妥珠单抗加多西他赛相比,T-DM1具有良好的安全性,较少的3级不良事件(46.4%对90.9%)、导致停药的不良事件(7.2%对40.9%)和严重不良事件(20.3%对25.8%)。
  • 在T-DM1与医生治疗选择的随机III期对比研究TH3RESA (NCT01419197)中,证实了在之前接受曲妥珠单抗和拉帕替尼治疗的转移性HER2过表达乳腺癌患者中T-DM1活性的证据。
  • [证据级别:1iiA]本试验以2:1的比例随机分配602例患者(404例患者分配给T-DM1,198例患者分配给医生选择),并允许交叉到T-DM1。
  • 在T-DM1组7.2个月和医生选择组6.5个月的中位随访中,T-DM1组和医生选择组的中位PFS分别为6.2个月和3.3个月(HR,0.528;95%CI,0.422–0.661;P<0.0001)。
  • 与医生选择的治疗相比,T-DM1治疗组的OS明显更长(中位OS,22.7个月vs.15.8个月;HR,0.68;95%置CI,0.54–0.85;P=0.0007)。
  • 在三期MARIANNE(NCT0112184)试验中,评价了T-DM1作为转移性HER2过表达乳腺癌一线治疗的作用。
  • [证据级别:1iDiii]本研究随机分配1095例患者接受曲妥珠单抗加紫杉烷,T-DM1加安慰剂,或T-DM1加帕妥珠单抗。
  • 这些治疗组的中位PFS为曲妥珠单抗加紫杉烷组13.7个月,T-DM1加安慰剂组14.1个月,T-DM1加帕妥珠单抗组15.2个月。
  • T-DM1+安慰剂组与曲妥珠单抗加紫杉烷组相比(HR,0.91;97.5%CI,0.73-1.13),T-DM1 +帕妥珠单抗与曲妥珠单抗加紫杉烷组相比(HR,0.87;97.5%CI,0.69-1.08),PFS无显著性差异。
  • 因此,T-DM1+安慰剂和T-DM1+帕妥珠单抗均未显示PFS优于曲妥珠单抗加紫杉烷。
  • 酪氨酸激酶抑制剂治疗

    拉帕替尼是一种口服的HER2/neu和表皮生长因子受体酪氨酸激酶抑制剂。拉帕替尼联合卡培他滨治疗曲妥珠单抗治疗后进展的HER2阳性转移性乳腺癌患者显示出疗效。

    证据级别(拉帕替尼):

  • 一项非盲随机试验(GSK-EGF100151[NCT00078572])对324例局部晚期或转移性乳腺癌(包括蒽环类药物、紫杉类药物和曲妥珠单抗治疗后进展)患者联合卡培他滨和拉帕替尼与单用卡培他滨进行了比较。
  • [证据级别:1iiA]
  • 拉帕替尼加卡培他滨组的中位疾病进展时间为8.4个月,而卡培他滨组为4.4个月(HR为0.49;95%CI为0.34-0.71;P<0.001)。
  • OS无差异(HR,0.92;95%置信区间,0.58-1.46;P=0.72)。
  • [证据级别:1iiA]
  • 接受联合治疗的患者更容易出现腹泻、皮疹和消化不良。(有关腹泻的更多信息,请参阅PDQ胃肠道并发症总结。)
  • 没有关于疾病进展后生活质量或治疗的数据。
  • 生殖系BRCA突变

    对于携带生殖系BRCA突变的转移性乳腺癌患者,聚腺苷二磷酸核糖聚合酶(PARP)的口服抑制剂已显示出疗效。BRCA1和BRCA2是通过同源重组修复途径编码DNA修复相关蛋白的抑癌基因。PARP在DNA修复中起着关键性的作用,并已被用于治疗乳腺癌BRCA突变的患者的治疗。

    奥拉帕尼

    证据(奥拉帕尼):

  • OlympiAD(NCT 02000622)试验是一项随机、开放、三期试验,以2:1的比例随机分配302例患者接受奥拉帕尼(300 mg bid)或标准疗法(单药卡培他滨、艾日布林或长春瑞滨)。
  • 所有患者在辅助治疗或转移治疗前均接受过蒽环类和紫杉烷治疗,激素受体阳性的患者也曾接受过内分泌治疗。
  • 奥拉帕尼比标准治疗组中位PFS明显延长(7.0个月对4.2个月)。月;疾病进展或死亡的HR,0.58;95%置信区间,0.43-0.80;P<0.001)。
  • [证据级别:1iiA]
  • 两个治疗组中位死亡时间的OS无差异(HRdeath,0.90;95%CI,0.63–1.29;P=0.57)。
  • 奥拉帕尼比标准疗法毒性小,奥拉帕尼3级或以上不良反应发生率分别为36.6%和50.5%,贫血、恶心、呕吐、疲劳、头痛和咳嗽发生率较高,奥拉帕尼多发于中性粒细胞减少、掌跖红肿综合征,而肝功能检查异常多见于化疗。
  • 值得注意的是,亚组分析显示,相比激素受体阳性亚组(HR,0.82;95%CI,0.55–1.26),三阴乳腺癌亚组(HR,0.43;95%CI,0.29–0.63)使用奥拉帕尼时的PFS改善更明显。
  • 他拉唑帕尼

    证据(他拉唑帕尼):

  • EMBRACA(NCT 0 0 1 4 5775)试验是一项随机、开放、III期试验,将431例具有致病性生殖系BRCA或BRCA2突变和局部晚期或转移性乳腺癌的患者按2:1的比例分配接受他拉唑帕尼(每日1毫克口服)或医生选择的标准单药化疗(艾日布林、卡培他滨、吉西他滨或长春瑞滨)。
  • 所有患者都曾接受过蒽环类、紫杉类或蒽环+紫杉治疗。晚期患者接受三种或少于三种的细胞毒性化疗。在早期乳腺癌中,如果在病情进展前至少6个月完成了铂治疗,或者在病情进展时没有客观进展,那么先前的铂治疗是允许的。纳入激素受体阳性和激素受体阴性患者。
  • 他拉唑帕尼组的中位PFS明显长于标准治疗组(8.6个月vs.5.6个月;疾病进展或死亡的HR为0.54;95%CI为0.41-0.71;P<0.001)。
  • 在所有亚组中都观察到了获益,尽管在接受过铂治类疗的亚组患者中CIs广泛存在。
  • 两组之间中位OS在没有差异(22.3个月vs.19.5个月;HR death,0.76;95%CI,0.55-1.06;P=0.11),尽管存活数据还不成熟。
  • 他拉唑帕尼的主要毒性是骨髓抑制,尤其是贫血。
  • 患者报告的结果数据显示,在生活质量方面,他拉唑帕尼比标准化疗更为有益。
  • (更多信息请参阅PDQ乳腺癌和妇科癌遗传学总结。)

    化疗

    接受激素治疗且肿瘤进展的患者是细胞毒性化疗的候选者。没有数据表明联合治疗比单药治疗更有益于OS。激素受体阴性肿瘤和内脏转移或症状性疾病的患者也可作为细胞毒性药物化疗的候选者。

    在转移性乳腺癌中表现出活性的单一药物包括:

  • 蒽环类药物。
  • 多柔比星。
  • 表柔比星。
  • 阿霉素脂质体。
  • 米托蒽醌。
  • 紫杉烷。
  • 紫杉醇。
  • 多西他赛。
  • 白蛋白结合型紫杉醇(ABI-007或Abraxane)。
  • 烷化剂。
  • 环磷酰胺。
  • 氟嘧啶。
  • 卡培他滨。
  • 5-氟尿嘧啶(5-FU)。
  • 抗代谢药物。
  • 甲氨蝶呤。
  • 长春花生物碱。
  • 长春瑞滨。
  • 长春碱。
  • 长春新碱。
  • 铂。
  • 卡铂。
  • 顺铂。
  • 其他。
  • 吉西他滨。
  • 丝裂霉素C。
  • 甲磺酸艾瑞布林
  • 伊沙匹隆。
  • 在转移性乳腺癌中显示活性的联合治疗方案包括:

  • AC:多柔比星和环磷酰胺。
  • EC:表柔比星和环磷酰胺。
  • 多西他赛和多柔比星。
  • CAF:环磷酰胺、多柔比星和5-氟尿嘧啶。
  • CMF:环磷酰胺、甲氨蝶呤和5-氟尿嘧啶。
  • 多柔比星和紫杉醇。
  • 多西他赛和卡培他滨。
  • 长春瑞滨和表柔比星。
  • 卡培他滨和伊沙匹隆。
  • 卡铂和吉西他滨。
  • 吉西他滨和紫杉醇。
  • 没有数据表明联合治疗比单药治疗更有益于OS。一项东部肿瘤协作组间研究(E-1193)随机分配患者接受紫杉醇和多柔比星的治疗,既给予联合治疗,也给予序贯治疗。

    尽管联合治疗组的缓解率和疾病进展时间都更好,但两组的存活率是相同的。

    [证据级别:1iiA];

    患者的个体治疗选择受以下因素影响:

  • 疾病进展率。
  • 有无合并症。
  • 医生/患者偏好。
  • 目前,没有数据支持任何特定治疗方案的优越性。对于转移性疾病复发的患者,可序贯使用单一药物或联合用药。如果有快速进展性疾病或内脏危象的迹象,通常会进行联合化疗。化疗和激素治疗的联合应用并没有显示出这些药物序贯使用的优势。

    对17项随机试验的系统回顾发现,在化疗方案中加入一种或多种化疗药物以加强治疗,可改善肿瘤应答,但对OS无影响。

    [证据级别:1iiA]

    关于化疗持续时间的决定可考虑以下方面:

  • 患者偏好和治疗目标。
  • 既往治疗的毒性。
  • 替代治疗方案的可用性。
  • 对患者疾病缓解或稳定的最佳治疗时间进行了多组研究。对于获得对初始治疗完全缓解的患者,两项随机试验显示,与复发时的观察和治疗相比,使用不同的化疗方案立即治疗后,DFS延长。

    [证据级别:1iiA]然而,这两项研究都没有显示接受立即治疗的患者的OS有改善; 在其中一项研究中,

    在立即接受治疗的组中,存活率实际上更差。同样,当初始治疗后部分缓解或疾病稳定的患者被随机分配接受不同的化疗或观察时,存活率没有差异;

    或者用不同的化疗方案,用高剂量和低剂量比较时,存活率没有差异。

    [证据级别:1iiA]然而,324例疾病得到控制的患者被随机分配到维持性化疗或观察组。接受维持性化疗(紫杉醇和吉西他滨)的患者在6个月时PFS改善,OS改善。这与不良事件的增加率有关。

    [证据级别:1iiA]由于对转移性疾病的治疗没有标准方法,所以需要二线疗法的患者是临床试验的良好候选人。

    化疗加免疫治疗

    在III期、随机、安慰剂对照IMpassion130试验(NCT 02425891)中,对激素受体阴性和HER2阴性的晚期乳腺癌患者在一线化疗中添加一种抗程序性死亡配体1 (PD-L1)阳性抗体Atezolizumab进行了评估。

    受试者(N=902)按1:1随机接受给 Atezolizumab加白蛋白结合型紫杉醇或安慰剂加白蛋白结合型紫杉醇。受试者根据是/否肝转移、是/否接受过紫杉烷治疗和PD-L1状态(阳性或阴性)进行分层。PD-L1评分≥1%被定义为阳性。共同的主要终点包括PFS和OS,这两个指标在治疗意向人群和PD-L1阳性人群中进行评估(n=369)。

  • PFS数据是中位随访12.9个月的数据,包括以下内容:
  • 在意向治疗人群中,联合Atezolizumab后,PFS改善(平均PFS,7.2个月vs.5.5个月;HR,0.80;95%CI,0.69–0.92;P=.0025)。
  • 在PD-L1阳性人群中,联合Atezolizumab后,PFS改善(平均PFS,7.5个月对5个月;HR,0.62;95%CI,0.49-0.78;P<0.001)。
  • OS数据还不成熟。在最后一次PFS分析时进行的第一次OS中期分析的结果包括:
  • 在意向治疗人群中,添加 Atezolizumab后OS改善的趋势不显著(中位OS,21.3个月对17.6个月;HR,0.84;95%CI,0.69-1.02;P=0.08)。
  • 研究设计对OS采用分层检验,要求在PD-L1阳性人群的两个组之间比较OS之前,在意向治疗人群中使用Atezolizumab显著改善OS。由于在第一次中期分析时没有满足这一要求,因此当时无法确定在PD-L1阳性人群中比较两组之间OS的P值。然而,在PD-L1阳性人群中,Atezolizumab组的中位OS延长了9.5个月(25个月对15.5个月;HR,0.62;95%CI,0.45-0.86)。
  • [证据级别:1iDiii]
  • 不良事件按预期发生。可能与免疫相关的不良事件在Atezolizumab组更为频繁。
  • Atezolizumab被FDA批准与蛋白结合型紫杉醇联合应用于局部晚期或转移性三阴性乳腺癌患者,其肿瘤表达PD-L1。

    Sacituzumab govitecan

  • Sacituzumab-govitecan是一种抗体药物结合物,结合抗滋养层细胞表面抗原2抗体和伊立替康的活性代谢产物。
  • 在I/II期试验中,108例三阴乳腺癌患者在21天周期的第1天和第8天接受了至少两个化疗方案(中位,3个)的sacituzumab-govitecan,剂量为10 mg/kg静脉注射。
  • 缓解率为33.3%(95%CI,24.6%-43.1%)。
  • 中位反应持续时间为7.7个月(95%CI,4.9-10.8)。
  • [证据级别:3iiiDiv]
  • 主要毒性为中性粒细胞减少,治疗期间发生4例死亡。
  • FDA批准了sacituzumab-govitecan的突破性治疗方案,一项验证性随机试验正在进行中。
  • 蒽环类药物对心脏的毒性作用

    在为选定的患者选择化疗方案时,应考虑蒽环类药物引起心脏毒性效应的可能性。公认的心脏毒性风险因素包括:

  • 高龄
  • 以前接受过胸壁放射治疗。
  • 以前使用过过蒽环类药物。
  • 高血压和已知的潜在心脏病。
  • 糖尿病。
  • 在对照研究中,心脏保护药物右雷佐生已被证明可降低多柔比星诱导的心脏毒性的风险。这种药物的使用允许患者接受更高的多柔比星累积剂量,并允许有心脏危险因素的患者能够接受多柔比星。

    持续静脉滴注多柔比星也可以降低心脏毒性的风险。

    美国临床肿瘤学会指南建议,如果转移性癌症患者接受了累积剂量为300毫克/ m2或更高的多柔比星,当进一步使用蒽环类药物治疗可能获益时,使用右雷佐生。

    右雷佐生对接受表柔比星的患者有类似的保护作用。

    手术

    手术可能适用于特定的患者。例如,如果出现以下问题,患者可能需要手术:

  • 真菌性/疼痛性乳腺病变(乳房切除术)。
  • 脑实质或椎体转移瘤伴脊髓压迫。
  • 孤立性肺转移瘤。
  • 病理性(或即将发生的)骨折。
  • 胸腔或心包积液。
  • (有关更多信息,请参阅癌症疼痛的PDQ总结;有关胸腔积液和心包积液的信息,请参阅心肺综合征的PDQ总结。)

    放射治疗

    放射治疗在缓解局部症状性转移中起着重要作用。

    外照射治疗的适应症包括:

  • 疼痛性骨转移。
  • 不可切除的中枢神经系统转移瘤(如脑、脑膜和脊髓)。
  • 支气管阻塞。
  • 真菌性/疼痛性乳腺或胸壁病变。
  • 颅内或脊髓转移瘤减压术后。
  • 病理性骨折固定后。
  • 氯化锶Sr 89是一种全身给药的放射性核素,可用于缓解弥漫性骨转移。

    骨修复治疗

    应考虑使用骨修复治疗来降低骨骼疾病患者的骨骼相关事件发病率。

    帕米膦酸钠和氯膦酸钠在骨转移患者中的随机试验结果显示骨骼相关事件发病率下降。

    [证据级别:1iC]唑来膦酸盐至少和帕米膦酸盐一样有效。

    在CALGB-70604[Alliance;NCT00869206]中研究了唑来膦酸盐的最佳给药方案,该方案随机分配1822例患者,其中855例患有转移性乳腺癌,每4周或每12周接受一次唑来膦酸盐。

    两组的骨骼相关事件相似,唑来膦酸盐每4周给药组260例患者(29.5%)和唑来膦酸盐每12周给药组253例患者(28.6%)出现至少一个骨骼相关事件(风险差异为-0.3%[单侧95%置信区间,-4%无穷大];非劣性P<0.001)。

    [证据级别:1iiD]这项研究表明,每12周延长唑来膦酸盐的给药间隔是一个合理的治疗选择。

    单克隆抗体地诺单抗抑制核因子kappaβ配体受体激活剂(RANKL)。比较唑来膦酸盐和地舒单抗治疗骨转移的三期临床试验(NCT 00321464、NCT 0321620和NCT 0330759)的荟萃分析表明,地诺单抗与唑来膦酸盐在降低首次骨相关事件风险方面相似。

    (有关双膦酸盐的更多信息,请参阅关于癌症疼痛的PDQ总结。)

    贝伐单抗

    贝伐单抗是一种人源化的单克隆抗体,可直接作用于血管内皮生长因子-a的所有亚型。它在转移性乳腺癌治疗中的作用仍有争议。

    证据(贝伐单抗治疗转移性乳腺癌):

  • 贝伐单抗作为转移性乳腺癌患者的二线和三线治疗的有效性和安全性在单一、开放、随机试验中进行了研究。
  • 该研究纳入462例曾接受过蒽环类药物和紫杉烷类药物治疗的患者,随机分为卡培他滨联合贝伐单抗组和单用卡培他滨组。
  • [证据级别:1iiA]
  • 这项研究未能证明PFS(联合治疗4.9个月,而单用卡培他滨治疗4.2个月;HR,0.98)或OS(15.1个月,而单用卡培他滨治疗14.5个月)有统计学意义。
  • [证据级别:1iA]
  • ECOG-2100(NCT00028990)是一项开放、随机、三期试验,比较了单用紫杉醇与紫杉醇联合贝伐单抗的疗效。
  • [证据级别:1iiA]
  • 试验表明,与紫杉醇单独治疗转移性乳腺癌相比,紫杉醇联合贝伐单抗治疗转移性乳腺癌的中位PFS明显延长(11.8个月对5.9个月;HR,0.60;P<0.001)。
  • [证据级别:1iA]
  • 贝伐单抗的加入并没有改善OS(26.7个月对25.2个月;P=0.16)。
  • 值得注意的是,贝伐单抗组患者明显增加了严重高血压、蛋白尿、脑血管缺血和感染发生率。
  • AVADO(NCT00333775)试验随机分配736例患者接受多西他赛加安慰剂或多西他赛加贝伐单抗治疗,每3周7.5 mg/kg或15 mg/kg,作为转移性乳腺癌患者的初始治疗。
  • [证据级别:1iiA]
  • 多西他赛联合贝伐单抗(15 mg/kg,而不是7.5 mg/kg)与安慰剂(10.1个月 vs 8.1个月)相比,中位PFS有所改善,但没有改善OS(30.2个月vs 31.9个月;P=0.85)。
  • [证据级别:1iiA]
  • 包含贝伐单抗组的患者毒性更大,出血和高血压的发生率明显高于安慰剂组。
  • RIBBON 1(NCT00262067)试验以2:1的方式随机分配1237例患者接受标准化疗加贝伐单抗或标准化疗加安慰剂。
  • [证据级别:1iiA]
  • 每种贝伐单抗联合用药组的中位PFS均较长(卡培他滨组:从5.7个月增加到8.6个月;HR,0.69;95%CI,0.56-0.84;对数秩,P<0.001;紫杉烷蒽环类组:从8.0个月增加到9.2个月;HR,0.64;95%CI,0.52-0.80;对数秩,P<0.001)。
  • [证据级别:1iiA]
  • 安慰剂组和贝伐单抗组的OS无统计学差异。
  • 贝伐单抗的毒性与以往贝伐单抗临床试验相似。
  • RIBBON 2(NCT00281697)试验研究了贝伐单抗作为转移性乳腺癌二线治疗的疗效。本试验以2:1的方式随机分配684例患者接受标准化疗加贝伐单抗或标准化疗加安慰剂。
  • [证据级别:1iA]
  • 含贝伐单抗的治疗组中位PFS从5.1个月增加到7.2个月(PFS的分层HR为0.78;95%置信区间为0.64-0.93;P=0.0072)。
  • 然而,OS在统计学上无显著差异(化疗加安慰剂组为16.4个月,化疗加贝伐单抗组为18.0个月,P=0.3741)。
  • [证据级别:1iA]
  • 贝伐单抗的毒性与以前的临床试验相似。
  • 2011年11月,由于一致发现贝伐单抗只轻微改善了PFS,但没有改善OS,并且考虑到贝伐单抗具有相当大的毒性,FDA撤销了贝伐单抗治疗转移性乳腺癌的批准。

    当前临床试验

    使用高级临床试验搜索引擎,以查找NCI支持的正在招募患者的癌症临床试验。根据试验地点、治疗类型、药物名称和其他标准可以缩小搜索范围。有关临床试验的一般信息也可以获得。

    参考文献

  • Honig SF: Hormonal therapy and chemotherapy. In: Harris JR, Morrow M, Lippman ME, et al., eds.: Diseases of the Breast. Lippincott-Raven Publishers: Philadelphia, Pa, 1996, pp 669-734.
  • Seidman AD, Bordeleau L, Fehrenbacher L, et al.: National Cancer Institute Breast Cancer Steering Committee Working Group Report on Meaningful and Appropriate End Points for Clinical Trials in Metastatic Breast Cancer. J Clin Oncol : JCO1800242, 2018.
  • Rugo HS, Diéras V, Gelmon KA, et al.: Impact of palbociclib plus letrozole on patient-reported health-related quality of life: results from the PALOMA-2 trial. Ann Oncol 29 (4): 888-894, 2018.
  • Rugo HS, Finn RS, Diéras V, et al.: Palbociclib plus letrozole as first-line therapy in estrogen receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer with extended follow-up. Breast Cancer Res Treat 174 (3): 719-729, 2019.
  • Turner NC, Ro J, André F, et al.: Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer. N Engl J Med 373 (3): 209-19, 2015.
  • Verma S, O'Shaughnessy J, Burris HA, et al.: Health-related quality of life of postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer treated with ribociclib + letrozole: results from MONALEESA-2. Breast Cancer Res Treat 170 (3): 535-545, 2018.
  • Janni W, Alba E, Bachelot T, et al.: First-line ribociclib plus letrozole in postmenopausal women with HR+ , HER2- advanced breast cancer: Tumor response and pain reduction in the phase 3 MONALEESA-2 trial. Breast Cancer Res Treat 169 (3): 469-479, 2018.
  • Kaufman PA, Toi M, Neven P, et al.: Health-Related Quality of Life in MONARCH 2: Abemaciclib plus Fulvestrant in Hormone Receptor-Positive, HER2-Negative Advanced Breast Cancer After Endocrine Therapy. Oncologist : , 2019.
  • Finn RS, Crown JP, Lang I, et al.: The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 16 (1): 25-35, 2015.
  • Finn RS, Martin M, Rugo HS, et al.: Palbociclib and Letrozole in Advanced Breast Cancer. N Engl J Med 375 (20): 1925-1936, 2016.
  • Hortobagyi GN, Stemmer SM, Burris HA, et al.: Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer. N Engl J Med 375 (18): 1738-1748, 2016.
  • Slamon DJ, Neven P, Chia S, et al.: Phase III Randomized Study of Ribociclib and Fulvestrant in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: MONALEESA-3. J Clin Oncol 36 (24): 2465-2472, 2018.
  • Slamon DJ, Neven P, Chia S, et al.: Overall Survival with Ribociclib plus Fulvestrant in Advanced Breast Cancer. N Engl J Med 382 (6): 514-524, 2020.
  • Tripathy D, Im SA, Colleoni M, et al.: Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol 19 (7): 904-915, 2018.
  • Im SA, Lu YS, Bardia A, et al.: Overall Survival with Ribociclib plus Endocrine Therapy in Breast Cancer. N Engl J Med 381 (4): 307-316, 2019.
  • Goetz MP, Toi M, Campone M, et al.: MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer. J Clin Oncol 35 (32): 3638-3646, 2017.
  • Cristofanilli M, Turner NC, Bondarenko I, et al.: Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol 17 (4): 425-39, 2016.
  • Turner NC, Slamon DJ, Ro J, et al.: Overall Survival with Palbociclib and Fulvestrant in Advanced Breast Cancer. N Engl J Med 379 (20): 1926-1936, 2018.
  • Sledge GW, Toi M, Neven P, et al.: MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy. J Clin Oncol 35 (25): 2875-2884, 2017.
  • Sledge GW, Toi M, Neven P, et al.: The Effect of Abemaciclib Plus Fulvestrant on Overall Survival in Hormone Receptor-Positive, ERBB2-Negative Breast Cancer That Progressed on Endocrine Therapy-MONARCH 2: A Randomized Clinical Trial. JAMA Oncol : , 2019.
  • Dickler MN, Tolaney SM, Rugo HS, et al.: MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2- Metastatic Breast Cancer. Clin Cancer Res 23 (17): 5218-5224, 2017.
  • Baselga J, Campone M, Piccart M, et al.: Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366 (6): 520-9, 2012.
  • Piccart M, Hortobagyi GN, Campone M, et al.: Everolimus plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: overall survival results from BOLERO-2†. Ann Oncol 25 (12): 2357-62, 2014.
  • Bachelot T, Bourgier C, Cropet C, et al.: Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study. J Clin Oncol 30 (22): 2718-24, 2012.
  • Kornblum N, Zhao F, Manola J, et al.: Randomized Phase II Trial of Fulvestrant Plus Everolimus or Placebo in Postmenopausal Women With Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer Resistant to Aromatase Inhibitor Therapy: Results of PrE0102. J Clin Oncol 36 (16): 1556-1563, 2018.
  • Rugo HS, Seneviratne L, Beck JT, et al.: Prevention of everolimus-related stomatitis in women with hormone receptor-positive, HER2-negative metastatic breast cancer using dexamethasone mouthwash (SWISH): a single-arm, phase 2 trial. Lancet Oncol 18 (5): 654-662, 2017.
  • André F, Ciruelos E, Rubovszky G, et al.: Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N Engl J Med 380 (20): 1929-1940, 2019.
  • André F, O'Regan R, Ozguroglu M, et al.: Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol 15 (6): 580-91, 2014.
  • Bonneterre J, Thürlimann B, Robertson JF, et al.: Anastrozole versus tamoxifen as first-line therapy for advanced breast cancer in 668 postmenopausal women: results of the Tamoxifen or Arimidex Randomized Group Efficacy and Tolerability study. J Clin Oncol 18 (22): 3748-57, 2000.
  • Nabholtz JM, Buzdar A, Pollak M, et al.: Anastrozole is superior to tamoxifen as first-line therapy for advanced breast cancer in postmenopausal women: results of a North American multicenter randomized trial. Arimidex Study Group. J Clin Oncol 18 (22): 3758-67, 2000.
  • Mouridsen H, Gershanovich M, Sun Y, et al.: Phase III study of letrozole versus tamoxifen as first-line therapy of advanced breast cancer in postmenopausal women: analysis of survival and update of efficacy from the International Letrozole Breast Cancer Group. J Clin Oncol 21 (11): 2101-9, 2003.
  • Mauri D, Pavlidis N, Polyzos NP, et al.: Survival with aromatase inhibitors and inactivators versus standard hormonal therapy in advanced breast cancer: meta-analysis. J Natl Cancer Inst 98 (18): 1285-91, 2006.
  • Robertson JFR, Bondarenko IM, Trishkina E, et al.: Fulvestrant 500 mg versus anastrozole 1 mg for hormone receptor-positive advanced breast cancer (FALCON): an international, randomised, double-blind, phase 3 trial. Lancet 388 (10063): 2997-3005, 2016.
  • Osborne CK, Pippen J, Jones SE, et al.: Double-blind, randomized trial comparing the efficacy and tolerability of fulvestrant versus anastrozole in postmenopausal women with advanced breast cancer progressing on prior endocrine therapy: results of a North American trial. J Clin Oncol 20 (16): 3386-95, 2002.
  • Howell A, Robertson JF, Quaresma Albano J, et al.: Fulvestrant, formerly ICI 182,780, is as effective as anastrozole in postmenopausal women with advanced breast cancer progressing after prior endocrine treatment. J Clin Oncol 20 (16): 3396-403, 2002.
  • Henderson IC: A rose is no longer a rose. J Clin Oncol 20 (16): 3365-8, 2002.
  • Flemming J, Madarnas Y, Franek JA: Fulvestrant for systemic therapy of locally advanced or metastatic breast cancer in postmenopausal women: a systematic review. Breast Cancer Res Treat 115 (2): 255-68, 2009.
  • Chia S, Gradishar W, Mauriac L, et al.: Double-blind, randomized placebo controlled trial of fulvestrant compared with exemestane after prior nonsteroidal aromatase inhibitor therapy in postmenopausal women with hormone receptor-positive, advanced breast cancer: results from EFECT. J Clin Oncol 26 (10): 1664-70, 2008.
  • Di Leo A, Jerusalem G, Petruzelka L, et al.: Results of the CONFIRM phase III trial comparing fulvestrant 250 mg with fulvestrant 500 mg in postmenopausal women with estrogen receptor-positive advanced breast cancer. J Clin Oncol 28 (30): 4594-600, 2010.
  • Mehta RS, Barlow WE, Albain KS, et al.: Combination anastrozole and fulvestrant in metastatic breast cancer. N Engl J Med 367 (5): 435-44, 2012.
  • Bergh J, Jönsson PE, Lidbrink EK, et al.: FACT: an open-label randomized phase III study of fulvestrant and anastrozole in combination compared with anastrozole alone as first-line therapy for patients with receptor-positive postmenopausal breast cancer. J Clin Oncol 30 (16): 1919-25, 2012.
  • Mehta RS, Barlow WE, Albain KS, et al.: Overall Survival with Fulvestrant plus Anastrozole in Metastatic Breast Cancer. N Engl J Med 380 (13): 1226-1234, 2019.
  • Pegram MD, Pauletti G, Slamon DJ: HER-2/neu as a predictive marker of response to breast cancer therapy. Breast Cancer Res Treat 52 (1-3): 65-77, 1998.
  • Cobleigh MA, Vogel CL, Tripathy D, et al.: Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17 (9): 2639-48, 1999.
  • Slamon DJ, Leyland-Jones B, Shak S, et al.: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344 (11): 783-92, 2001.
  • Seidman A, Hudis C, Pierri MK, et al.: Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 20 (5): 1215-21, 2002.
  • Robert N, Leyland-Jones B, Asmar L, et al.: Randomized phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 24 (18): 2786-92, 2006.
  • Valero V, Forbes J, Pegram MD, et al.: Multicenter phase III randomized trial comparing docetaxel and trastuzumab with docetaxel, carboplatin, and trastuzumab as first-line chemotherapy for patients with HER2-gene-amplified metastatic breast cancer (BCIRG 007 study): two highly active therapeutic regimens. J Clin Oncol 29 (2): 149-56, 2011.
  • Baselga J, Cortés J, Kim SB, et al.: Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366 (2): 109-19, 2012.
  • Swain SM, Baselga J, Kim SB, et al.: Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med 372 (8): 724-34, 2015.
  • Verma S, Miles D, Gianni L, et al.: Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367 (19): 1783-91, 2012.
  • Diéras V, Miles D, Verma S, et al.: Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): a descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol 18 (6): 732-742, 2017.
  • Hurvitz SA, Dirix L, Kocsis J, et al.: Phase II randomized study of trastuzumab emtansine versus trastuzumab plus docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol 31 (9): 1157-63, 2013.
  • Krop IE, Kim SB, González-Martín A, et al.: Trastuzumab emtansine versus treatment of physician's choice for pretreated HER2-positive advanced breast cancer (TH3RESA): a randomised, open-label, phase 3 trial. Lancet Oncol 15 (7): 689-99, 2014.
  • Krop IE, Kim SB, Martin AG, et al.: Trastuzumab emtansine versus treatment of physician's choice in patients with previously treated HER2-positive metastatic breast cancer (TH3RESA): final overall survival results from a randomised open-label phase 3 trial. Lancet Oncol 18 (6): 743-754, 2017.
  • Perez EA, Barrios C, Eiermann W, et al.: Trastuzumab Emtansine With or Without Pertuzumab Versus Trastuzumab Plus Taxane for Human Epidermal Growth Factor Receptor 2-Positive, Advanced Breast Cancer: Primary Results From the Phase III MARIANNE Study. J Clin Oncol 35 (2): 141-148, 2017.
  • Geyer CE, Forster J, Lindquist D, et al.: Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355 (26): 2733-43, 2006.
  • Robson M, Im SA, Senkus E, et al.: Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N Engl J Med 377 (6): 523-533, 2017.
  • Litton JK, Rugo HS, Ettl J, et al.: Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N Engl J Med 379 (8): 753-763, 2018.
  • Wilcken N, Dear R: Chemotherapy in metastatic breast cancer: A summary of all randomised trials reported 2000-2007. Eur J Cancer 44 (15): 2218-25, 2008.
  • Ranson MR, Carmichael J, O'Byrne K, et al.: Treatment of advanced breast cancer with sterically stabilized liposomal doxorubicin: results of a multicenter phase II trial. J Clin Oncol 15 (10): 3185-91, 1997.
  • Harris L, Batist G, Belt R, et al.: Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer 94 (1): 25-36, 2002.
  • Keller AM, Mennel RG, Georgoulias VA, et al.: Randomized phase III trial of pegylated liposomal doxorubicin versus vinorelbine or mitomycin C plus vinblastine in women with taxane-refractory advanced breast cancer. J Clin Oncol 22 (19): 3893-901, 2004.
  • Sparano JA, Makhson AN, Semiglazov VF, et al.: Pegylated liposomal doxorubicin plus docetaxel significantly improves time to progression without additive cardiotoxicity compared with docetaxel monotherapy in patients with advanced breast cancer previously treated with neoadjuvant-adjuvant anthracycline therapy: results from a randomized phase III study. J Clin Oncol 27 (27): 4522-9, 2009.
  • Seidman AD, Berry D, Cirrincione C, et al.: Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressors: final results of Cancer and Leukemia Group B protocol 9840. J Clin Oncol 26 (10): 1642-9, 2008.
  • Gonzalez-Angulo AM, Hortobagyi GN: Optimal schedule of paclitaxel: weekly is better. J Clin Oncol 26 (10): 1585-7, 2008.
  • Gradishar WJ, Tjulandin S, Davidson N, et al.: Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23 (31): 7794-803, 2005.
  • Ibrahim NK, Samuels B, Page R, et al.: Multicenter phase II trial of ABI-007, an albumin-bound paclitaxel, in women with metastatic breast cancer. J Clin Oncol 23 (25): 6019-26, 2005.
  • Blum JL, Jones SE, Buzdar AU, et al.: Multicenter phase II study of capecitabine in paclitaxel-refractory metastatic breast cancer. J Clin Oncol 17 (2): 485-93, 1999.
  • Blum JL, Dieras V, Lo Russo PM, et al.: Multicenter, Phase II study of capecitabine in taxane-pretreated metastatic breast carcinoma patients. Cancer 92 (7): 1759-68, 2001.
  • Venturini M, Paridaens R, Rossner D, et al.: An open-label, multicenter study of outpatient capecitabine monotherapy in 631 patients with pretreated advanced breast cancer. Oncology 72 (1-2): 51-7, 2007.
  • Degardin M, Bonneterre J, Hecquet B, et al.: Vinorelbine (navelbine) as a salvage treatment for advanced breast cancer. Ann Oncol 5 (5): 423-6, 1994.
  • Carmichael J, Walling J: Advanced breast cancer: investigational role of gemcitabine. Eur J Cancer 33 (Suppl 1): S27-30, 1997.
  • Vahdat LT, Pruitt B, Fabian CJ, et al.: Phase II study of eribulin mesylate, a halichondrin B analog, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol 27 (18): 2954-61, 2009.
  • Cortes J, O'Shaughnessy J, Loesch D, et al.: Eribulin monotherapy versus treatment of physician's choice in patients with metastatic breast cancer (EMBRACE): a phase 3 open-label randomised study. Lancet 377 (9769): 914-23, 2011.
  • Smith JW, Vukelja S, Rabe A, et al.: Phase II randomized trial of weekly and every-3-week ixabepilone in metastatic breast cancer patients. Breast Cancer Res Treat 142 (2): 381-8, 2013.
  • Tranum BL, McDonald B, Thigpen T, et al.: Adriamycin combinations in advanced breast cancer. A Southwest Oncology Group Study. Cancer 49 (5): 835-9, 1982.
  • Langley RE, Carmichael J, Jones AL, et al.: Phase III trial of epirubicin plus paclitaxel compared with epirubicin plus cyclophosphamide as first-line chemotherapy for metastatic breast cancer: United Kingdom National Cancer Research Institute trial AB01. J Clin Oncol 23 (33): 8322-30, 2005.
  • Misset JL, Dieras V, Gruia G, et al.: Dose-finding study of docetaxel and doxorubicin in first-line treatment of patients with metastatic breast cancer. Ann Oncol 10 (5): 553-60, 1999.
  • Buzdar AU, Kau SW, Smith TL, et al.: Ten-year results of FAC adjuvant chemotherapy trial in breast cancer. Am J Clin Oncol 12 (2): 123-8, 1989.
  • Tormey DC, Gelman R, Band PR, et al.: Comparison of induction chemotherapies for metastatic breast cancer. An Eastern Cooperative Oncology Group Trial. Cancer 50 (7): 1235-44, 1982.
  • Jassem J, Pieńkowski T, Płuzańska A, et al.: Doxorubicin and paclitaxel versus fluorouracil, doxorubicin, and cyclophosphamide as first-line therapy for women with metastatic breast cancer: final results of a randomized phase III multicenter trial. J Clin Oncol 19 (6): 1707-15, 2001.
  • Biganzoli L, Cufer T, Bruning P, et al.: Doxorubicin and paclitaxel versus doxorubicin and cyclophosphamide as first-line chemotherapy in metastatic breast cancer: The European Organization for Research and Treatment of Cancer 10961 Multicenter Phase III Trial. J Clin Oncol 20 (14): 3114-21, 2002.
  • O'Shaughnessy J, Miles D, Vukelja S, et al.: Superior survival with capecitabine plus docetaxel combination therapy in anthracycline-pretreated patients with advanced breast cancer: phase III trial results. J Clin Oncol 20 (12): 2812-23, 2002.
  • Serin D, Verrill M, Jones A, et al.: Vinorelbine alternating oral and intravenous plus epirubicin in first-line therapy of metastatic breast cancer: results of a multicentre phase II study. Br J Cancer 92 (11): 1989-96, 2005.
  • Thomas ES, Gomez HL, Li RK, et al.: Ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment. J Clin Oncol 25 (33): 5210-7, 2007.
  • O'Shaughnessy J, Schwartzberg L, Danso MA, et al.: Phase III study of iniparib plus gemcitabine and carboplatin versus gemcitabine and carboplatin in patients with metastatic triple-negative breast cancer. J Clin Oncol 32 (34): 3840-7, 2014.
  • Albain KS, Nag SM, Calderillo-Ruiz G, et al.: Gemcitabine plus Paclitaxel versus Paclitaxel monotherapy in patients with metastatic breast cancer and prior anthracycline treatment. J Clin Oncol 26 (24): 3950-7, 2008.
  • Sledge GW, Neuberg D, Bernardo P, et al.: Phase III trial of doxorubicin, paclitaxel, and the combination of doxorubicin and paclitaxel as front-line chemotherapy for metastatic breast cancer: an intergroup trial (E1193). J Clin Oncol 21 (4): 588-92, 2003.
  • Seidman AD: Sequential single-agent chemotherapy for metastatic breast cancer: therapeutic nihilism or realism? J Clin Oncol 21 (4): 577-9, 2003.
  • Overmoyer B: Combination chemotherapy for metastatic breast cancer: reaching for the cure. J Clin Oncol 21 (4): 580-2, 2003.
  • Perez EA: Current management of metastatic breast cancer. Semin Oncol 26 (4 Suppl 12): 1-10, 1999.
  • Jones D, Ghersi D, Wilcken N: Addition of drug/s to a chemotherapy regimen for metastatic breast cancer. Cochrane Database Syst Rev 3: CD003368, 2006.
  • Falkson G, Gelman RS, Pandya KJ, et al.: Eastern Cooperative Oncology Group randomized trials of observation versus maintenance therapy for patients with metastatic breast cancer in complete remission following induction treatment. J Clin Oncol 16 (5): 1669-76, 1998.
  • Peters WP, Jones RB, Vrendenburgh J, et al.: A large, prospective, randomized trial of high-dose combination alkylating agents (CPB) with autologous cellular support (ABMS) as consolidation for patients with metastatic breast cancer achieving complete remission after intensive doxorubicin-based induction therapy (AFM). [Abstract] Proceedings of the American Society of Clinical Oncology 15: A-149, 121, 1996.
  • Muss HB, Case LD, Richards F, et al.: Interrupted versus continuous chemotherapy in patients with metastatic breast cancer. The Piedmont Oncology Association. N Engl J Med 325 (19): 1342-8, 1991.
  • Falkson G, Gelman RS, Glick J, et al.: Metastatic breast cancer: higher versus low dose maintenance treatment when only a partial response or a no change status is obtained following doxorubicin induction treatment. An Eastern Cooperative Oncology Group study. Ann Oncol 3 (9): 768-70, 1992.
  • Park YH, Jung KH, Im SA, et al.: Phase III, multicenter, randomized trial of maintenance chemotherapy versus observation in patients with metastatic breast cancer after achieving disease control with six cycles of gemcitabine plus paclitaxel as first-line chemotherapy: KCSG-BR07-02. J Clin Oncol 31 (14): 1732-9, 2013.
  • Schmid P, Adams S, Rugo HS, et al.: Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N Engl J Med 379 (22): 2108-2121, 2018.
  • Bardia A, Mayer IA, Vahdat LT, et al.: Sacituzumab Govitecan-hziy in Refractory Metastatic Triple-Negative Breast Cancer. N Engl J Med 380 (8): 741-751, 2019.
  • Swain SM, Whaley FS, Gerber MC, et al.: Delayed administration of dexrazoxane provides cardioprotection for patients with advanced breast cancer treated with doxorubicin-containing therapy. J Clin Oncol 15 (4): 1333-40, 1997.
  • Swain SM, Whaley FS, Gerber MC, et al.: Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol 15 (4): 1318-32, 1997.
  • Hensley ML, Schuchter LM, Lindley C, et al.: American Society of Clinical Oncology clinical practice guidelines for the use of chemotherapy and radiotherapy protectants. J Clin Oncol 17 (10): 3333-55, 1999.
  • Marty M, Espié M, Llombart A, et al.: Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane) in advanced/metastatic breast cancer patients treated with anthracycline-based chemotherapy. Ann Oncol 17 (4): 614-22, 2006.
  • Hortobagyi GN, Frye D, Buzdar AU, et al.: Decreased cardiac toxicity of doxorubicin administered by continuous intravenous infusion in combination chemotherapy for metastatic breast carcinoma. Cancer 63 (1): 37-45, 1989.
  • Hensley ML, Hagerty KL, Kewalramani T, et al.: American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol 27 (1): 127-45, 2009.
  • Venturini M, Michelotti A, Del Mastro L, et al.: Multicenter randomized controlled clinical trial to evaluate cardioprotection of dexrazoxane versus no cardioprotection in women receiving epirubicin chemotherapy for advanced breast cancer. J Clin Oncol 14 (12): 3112-20, 1996.
  • Hartsell WF, Scott CB, Bruner DW, et al.: Randomized trial of short- versus long-course radiotherapy for palliation of painful bone metastases. J Natl Cancer Inst 97 (11): 798-804, 2005.
  • Porter AT, McEwan AJ, Powe JE, et al.: Results of a randomized phase-III trial to evaluate the efficacy of strontium-89 adjuvant to local field external beam irradiation in the management of endocrine resistant metastatic prostate cancer. Int J Radiat Oncol Biol Phys 25 (5): 805-13, 1993.
  • Quilty PM, Kirk D, Bolger JJ, et al.: A comparison of the palliative effects of strontium-89 and external beam radiotherapy in metastatic prostate cancer. Radiother Oncol 31 (1): 33-40, 1994.
  • Hillner BE, Ingle JN, Chlebowski RT, et al.: American Society of Clinical Oncology 2003 update on the role of bisphosphonates and bone health issues in women with breast cancer. J Clin Oncol 21 (21): 4042-57, 2003.
  • Paterson AH, Powles TJ, Kanis JA, et al.: Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol 11 (1): 59-65, 1993.
  • Hortobagyi GN, Theriault RL, Lipton A, et al.: Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. Protocol 19 Aredia Breast Cancer Study Group. J Clin Oncol 16 (6): 2038-44, 1998.
  • Powles T, Paterson A, McCloskey E, et al.: Reduction in bone relapse and improved survival with oral clodronate for adjuvant treatment of operable breast cancer [ISRCTN83688026]. Breast Cancer Res 8 (2): R13, 2006.
  • Rosen LS, Gordon D, Kaminski M, et al.: Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter, comparative trial. Cancer 98 (8): 1735-44, 2003.
  • Himelstein AL, Foster JC, Khatcheressian JL, et al.: Effect of Longer-Interval vs Standard Dosing of Zoledronic Acid on Skeletal Events in Patients With Bone Metastases: A Randomized Clinical Trial. JAMA 317 (1): 48-58, 2017.
  • Lipton A, Fizazi K, Stopeck AT, et al.: Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomised, phase 3 trials. Eur J Cancer 48 (16): 3082-92, 2012.
  • Miller KD, Chap LI, Holmes FA, et al.: Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23 (4): 792-9, 2005.
  • Miller K, Wang M, Gralow J, et al.: Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357 (26): 2666-76, 2007.
  • Miles DW, Chan A, Dirix LY, et al.: Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 28 (20): 3239-47, 2010.
  • Robert NJ, Diéras V, Glaspy J, et al.: RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol 29 (10): 1252-60, 2011.
  • Brufsky AM, Hurvitz S, Perez E, et al.: RIBBON-2: a randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 29 (32): 4286-93, 2011.
  • Breast Cancer Treatment (Adult) (PDQ®)

    Metastatic Breast Cancer

    Treatment of metastatic disease is palliative in intent. Goals of treatment include prolonging life and improving quality of life. Although median survival has been reported to be 18 to 24 months overall,

    survival varies according to subtype. The longest median outcomes have been observed in patients with human epidermal growth factor receptor 2 (HER2)-positive and hormone receptor–positive metastatic breast cancer, and less favorable outcomes have been observed in patients with triple-negative metastatic breast cancer.

    Treatment options for metastatic breast cancer include the following:

  • Hormone therapy (tamoxifen, aromatase inhibitors).
  • HER2 targeted therapy.
  • CDK 4/6 inhibitors.
  • mTOR inhibitors.
  • PIK3CA inhibitors.
  • Chemotherapy.
  • Immunotherapy.
  • Surgery, for patients with limited symptomatic metastases.
  • Radiation therapy, for patients with limited symptomatic metastases.
  • Bone-modifying therapy, for patients with bone metastases.
  • In many cases, these therapies are given in sequence and used in various combinations.

    Cytologic or histologic documentation of metastatic disease, with testing of estrogen receptor (ER), progesterone receptor, and HER2 status, should be obtained whenever possible.

    All patients with metastatic breast cancer are considered candidates for ongoing clinical trials.

    Hormone Receptor–Positive Breast Cancer

    Endocrine therapy and cyclin-dependent kinase inhibitor therapy

    CDK4 and CDK6 have been implicated in the continued proliferation of hormone receptor–positive breast cancer resistant to endocrine therapy. CDK inhibitors have been approved by the U.S. Food and Drug Administration (FDA) in combination with endocrine therapy in both first-line and later-line treatment of advanced hormone receptor–positive HER2-negative breast cancer. Three oral CDK4/6 inhibitors are currently available: palbociclib, ribociclib, and abemaciclib.

    Overall, the addition of CDK 4/6 inhibitors to endocrine therapy is associated with improved breast cancer outcomes and, in general, either maintained or improved quality of life.

    First-line palbociclib and endocrine therapy

    Evidence (first-line palbociclib and endocrine therapy):

  • PALOMA-2 (NCT01740427) confirmed the results of the phase II PALOMA-1 trial.
  • This phase III, double-blind trial compared placebo plus letrozole with palbociclib plus letrozole as initial therapy for ER-positive postmenopausal patients with advanced disease (n = 666).
  • The primary endpoint (investigator-assessed progression-free survival [PFS]) was met with a median PFS of 24.8 months in the palbociclib-plus-letrozole group compared with 14.5 months in the placebo-plus-letrozole group (hazard ratio [HR], 0.58; 95% confidence interval [CI], 0.46–0.72; P < .001).
  • [Level of evidence: 1iDiii]
  • Overall survival (OS) data are not yet mature.
  • Patients who received palbociclib experienced more frequent cytopenias (66.4% grade 3 to 4 in palbociclib-treated patients vs. 1.4% in placebo-treated patients). Other common adverse events included nausea, arthralgia, fatigue, and alopecia. The most common grade 3 to 4 adverse events other than neutropenia included leukopenia (24.8% vs. 0%), anemia (5.4% vs. 1.8%), and fatigue (1.8% vs. 0.5%).
  • First-line ribociclib and endocrine therapy

    Ribociclib, another CDK4/6 inhibitor, has also been tested in the first-line setting for postmenopausal patients and premenopausal patients with hormone receptor–positive and HER2-negative recurrent or metastatic breast cancer.

    Evidence (first-line ribociclib and endocrine therapy):

  • The phase III, placebo-controlled MONALEESA-2 trial (NCT01958021) randomly assigned 668 patients to receive first-line ribociclib plus letrozole or placebo plus letrozole.
  • The primary endpoint (investigator-assessed PFS) was met. A preplanned interim analysis was performed after 243 patients had disease progression or died, and median duration of follow-up was 15.3 months. After 18 months, the PFS rate was 63.0% (95% CI, 54.6–70.3) in the ribociclib group and 42.2% (95% CI, 34.8–49.5) in the placebo group.
  • [Level of evidence: 1iDiii]
  • OS data were immature at the time of publication.
  • Adverse events in patients included neutropenia in the ribociclib group (74.3%) and in the placebo group (5.2%), nausea (51.5% and 28.5%), infection (50.3% and 42.4%), fatigue (36.5% and 30.0%), and diarrhea (35.0% and 22.1%).
  • These events were mostly grade 1 to 2 with the exception of cytopenia.
  • Grade 3 to 4 neutropenia occurred in 59.3% of patients in the ribociclib group and 0.9% of patients in the placebo group.
  • The rate of febrile neutropenia was 1.5% in the ribociclib group and 0% in the placebo group.
  • An increase in QTcF (QT interval corrected for heart rate according to Fridericia’s formula) interval of more than 60 milliseconds from baseline was observed in nine patients (2.7%) in the ribociclib arm compared with zero patients in the placebo arm.
  • Ribociclib has also been tested in combination with fulvestrant in postmenopausal patients with hormone receptor–positive and HER2-negative recurrent or metastatic breast cancer. The MONALEESA-3 (NCT02422615) trial included patients receiving first-line or second-line therapy. This phase III, placebo-controlled trial randomly assigned 726 patients in a 2:1 ratio to receive ribociclib plus fulvestrant or placebo plus fulvestrant.
  • The primary endpoint (investigator-assessed PFS) was met. At the time of final analysis for PFS, the median PFS for the ribociclib group was 20.5 months versus 12.8 months in the placebo group (HR, .593; 95% CI, .480–.732; P <.001).
  • [Level of evidence: 1iDiii]
  • OS was superior in the ribociclib group (HR, 0.724; 95% CI, 0.568–0.924; P = .004). The result crossed the prespecified stopping boundary (P = .011) for superior efficacy. Results were similar in all subgroups.
  • [Level of evidence: 1iA]
  • Adverse events were similar to those in other studies of CDK4/6 inhibitors.
  • Grade 3 to 4 neutropenia occurred in 53.4% of patients in the ribociclib group and 0.0% of patients in the placebo group.
  • The rate of febrile neutropenia was 1.0% in the ribociclib group and 0% in the placebo group.
  • An increase in QTcF interval of more than 60 milliseconds from baseline was observed in 6.5% of patients in the ribociclib arm and 0.4% in the placebo arm.
  • Ribociclib was also assessed in the first-line setting in a study conducted solely in premenopausal or perimenopausal women receiving either tamoxifen or a nonsteroidal aromatase inhibitor (AI) plus goserelin.
  • In the MONALEESA-7 (NCT02278120) trial, 672 premenopausal patients with hormone receptor–positive and HER2-negative recurrent or metastatic breast cancer, who had not received endocrine therapy for advanced disease, were randomly assigned in a 1:1 ratio to ribociclib or placebo.
  • The primary endpoint (investigator-assessed PFS) was met. At the time of final analysis for PFS, the median PFS for the ribociclib group was 23.8 months versus 13.0 months in the placebo group (HR, .55; 95% CI, 0.44–0.69; P < .0001).
  • [Level of evidence: 1iC]
  • OS was a secondary endpoint. The combination of ribociclib plus endocrine therapy was associated with longer OS than was endocrine therapy alone (42-month OS, 70.2% vs. 46%; HRdeath, 0.71; 95% CI, 0.54−0.95, P = .01).
  • [Level of evidence: 1iA] The survival benefit was observed both in patients who received an AI plus goserelin and in those who received tamoxifen, but it was not statistically significant in the much-smaller tamoxifen group.
  • Adverse events were similar to those in other studies of CDK4/6 inhibitors.
  • Grade 3 to 4 neutropenia occurred in 61% of patients in the ribociclib group and 4% of patients in the placebo group.
  • The rate of febrile neutropenia was 2.0% in the ribociclib group and 1.0% in the placebo group.
  • An increase in QTcF interval of more than 60 milliseconds from baseline was observed in 10.0 % of patients in the ribociclib arm and 2.0% in the placebo arm. Sixty-millisecond increases were more common in patients receiving tamoxifen (16% on ribociclib and 7% on placebo).
  • First-line abemaciclib and endocrine therapy

    Abemaciclib, another CDK4/6 inhibitor, has also been tested in the first-line setting for postmenopausal patients with hormone receptor–positive and HER2-negative recurrent or metastatic breast cancer.

    Evidence (first-line abemaciclib and endocrine therapy):

  • MONARCH 3 (NCT02246621) was a randomized, double-blind, phase III trial that evaluated first-line abemaciclib or placebo plus a nonsteroidal AI in 493 postmenopausal women with hormone receptor–positive and HER2-negative advanced breast cancer.
  • The primary endpoint, investigator-assessed PFS, was met. After a median follow-up of 17.8 months, the PFS was not reached in the abemaciclib arm and was reached at 14.7 months in the placebo arm (HR, 0.54; 95% CI, 0.41–0.72; P = .000021).
  • OS data are not yet mature.
  • The side effect profile of abemaciclib differs from the other CDK4/6 inhibitors. Diarrhea was the most frequent adverse event in the abemaciclib arm, although most of the diarrhea cases were grade 1.
  • Neutropenia was more common in the abemaciclib arm; however, only 21.1% of participants experienced grade 3 to 4 neutropenia.
  • Second-line palbociclib and endocrine therapy

    Evidence (second-line palbociclib and endocrine therapy):

  • PALOMA-3 (NCT01942135) is a double-blind, phase III trial of 521 patients with hormone receptor–positive, HER2/neu–negative, advanced breast cancer who had relapsed after or progressed on previous endocrine therapy and were randomly assigned to receive either fulvestrant plus placebo or fulvestrant plus palbociclib. Premenopausal and postmenopausal patients were eligible. Premenopausal patients received goserelin.
  • [Level of Evidence: 1iC]
  • The final PFS analysis showed a median PFS of 9.5 months on the palbociclib-fulvestrant arm versus 4.6 months on the placebo-fulvestrant arm (HR, 0.46; 95% CI, 0.36–0.59; P < .0001).
  • [Level of Evidence: 1iC]
  • Cytopenias, particularly neutropenia, were much more frequent on the palbociclib-containing arm, but febrile neutropenia was very uncommon (1%) in both groups. Patients receiving palbociclib had more-frequent fatigue, nausea, and headache.
  • A prespecified analysis of OS was made after 310 patients had died. A 6.9 month difference in median OS favoring the palbociclib-fulvestrant arm (34.9 months vs. 28.0 months) was found, which did not reach statistical significance (HR, 0.81; 95% CI, 0.64–1.03, P = .09).
  • In a preplanned subgroup analysis, improved OS was observed in patients who had demonstrated sensitivity to hormone therapy (HR, 0.72; 95% CI, 0.55−0.94), whereas in patients without sensitivity, OS was not improved in the palbociclib group (HR, 1.14; 95% CI, 0.71−1.84; P = .12 for interaction).
  • Second-line ribociclib and endocrine therapy

    The MONALEESA-3 trial included patients receiving second-line therapy. (Refer to the evidence on first-line ribociclib and endocrine therapy above for more information.)

    Second-line abemaciclib and endocrine therapy

    Evidence:

  • The MONARCH 2 (NCT02107703) study tested abemaciclib (CDK4/6 inhibitor) in a phase III, placebo-controlled trial that randomly assigned 669 patients with hormone receptor–positive and HER2-negative advanced breast cancer (with previous progression on endocrine therapy) to receive abemaciclib plus fulvestrant or placebo plus fulvestrant.
  • The primary endpoint (investigator-assessed PFS) was met, with median duration of follow-up of 19.5 months. The median PFS was 16.4 months for the abemaciclib-fulvestrant arm versus 9.3 months for the placebo-fulvestrant arm (HR, 0.55; 95% CI, 0.45–0.68; P < .001).
  • [Level of evidence: 1iDiii]
  • OS data are mature and demonstrate an improvement in OS for patients receiving abemaciclib, and showed a median OS of 46.7 months for abemaciclib plus fulvestrant versus 37.3 months for placebo (HR, 0.757; 95% CI, 0.606–0.945; P = .01).
  • [Level of Evidence: 1iA]
  • Adverse events included diarrhea in the abemaciclib group (86.4%) and in the placebo group (24.7%), neutropenia (46% and 4%), nausea (45.1% and 22.9%), fatigue (39.9% and 26.9%), and abdominal pain (35.4% and 15.7%).
  • These events were mostly grade 1 to 2. Grade 1 to 2 diarrhea occurred in 73% of the patients in the abemaciclib group and in 24.2% of the placebo group. Anti-diarrheal medicine effectively managed this symptom in most cases, according to the study report.
  • Grade 3 diarrhea occurred in 13.4% of patients in the abemaciclib group and 0.4% of patients in the placebo group. No grade 4 diarrhea was reported.
  • Grade 3 to 4 neutropenia occurred in 25.5% of patients in the abemaciclib group and 1.7% of patients in the placebo group. Febrile neutropenia was reported in six patients in the abemaciclib arm.
  • Single-agent cyclin-dependent kinase inhibitor therapy

    Evidence (single-agent cyclin-dependent kinase inhibitor therapy):

  • Single-agent abemaciclib was approved by the FDA for use in hormone receptor–positive, HER2-negative breast cancer with disease progression on or after endocrine therapy and chemotherapy on the basis of results of the MONARCH 1 (NCT02102490) trial.
  • Abemaciclib is the only CDK4/6 inhibitor approved as a single agent. MONARCH 1 was a single-arm phase II study of single-agent abemaciclib in 132 women with hormone receptor–positive and HER2-negative advanced breast cancer that had progressed on at least one line of previous endocrine therapy and at least two lines of previous chemotherapy. The study population was heavily pretreated, and most participants had visceral disease. Patients who had previous CDK inhibitors were excluded.
  • The primary endpoint, investigator-assessed objective response rate, was 19.7% at 12 months (95% CI, 13.3–27.5%).
  • The clinical benefit rate was 42.4%.
  • Median PFS was 6.0 months (95% CI, 4.2–7.5 months).
  • The most common adverse event was diarrhea, which occurred in 90.2% of the participants. However, the majority was grade 1 to 2, and only 19.7% of participants experienced grade 3 diarrhea. There was no grade 4 diarrhea.
  • Neutropenia occurred in 97.7% of participants; however, the majority was grade 1 to 2, and only 26.9% of participants experienced grade 3 to 4 neutropenia.
  • Mammalian target of rapamycin (mTOR) inhibitor therapy plus endocrine therapy

    Preclinical models and clinical studies suggest that mTOR inhibitors might overcome endocrine resistance.

    Evidence (mTOR inhibitor therapy):

  • The Breast Cancer Trial of Oral Everolimus (BOLERO-2 [NCT00863655]) was a randomized, phase III, placebo-controlled trial in which patients with hormone receptor–positive metastatic breast cancer that is resistant to nonsteroidal aromatase inhibition were randomly assigned to receive either the mTOR inhibitor everolimus plus exemestane, or placebo plus exemestane.
  • [Level of evidence: 1iDiii]
  • At the interim analysis, median PFS was 6.9 months for everolimus plus exemestane and 2.8 months for placebo plus exemestane (HR, 0.43; 95% CI, 0.35–0.54; P < .001).
  • The addition of everolimus to exemestane was more toxic than was placebo plus exemestane, with the most-common grade 3 or 4 adverse events being stomatitis (8% vs. 1%), anemia (6% vs. <1%), dyspnea (4% vs. 1%), hyperglycemia (4% vs. <1%), fatigue (4% vs. 1%), and pneumonitis (3% vs. 0%).
  • OS differences were not significant after further follow-up.
  • TAMRAD (NCT01298713) was an open-label randomized phase II trial comparing tamoxifen to tamoxifen plus everolimus in postmenopausal women whose disease had progressed after receiving an AI in the adjuvant or metastatic setting. The trial randomly assigned 57 women to receive tamoxifen and 54 women to receive the combination therapy.
  • Median time to progression was 8.6 months in the combination group and 4.5 months in the tamoxifen group (HR, 0.54; 95% CI, 0.56−0.81; P = .002).
  • Toxicities were greater on the everolimus arm and similar to those in the BOLERO2 trial.
  • In an exploratory analysis, OS was 32.9 months in the tamoxifen group and not reached in the combination group (HR, 0.45; 95% CI, 0.24−0.81; P = .007).
  • [Level of evidence: 1iiA]
  • PrE0102 (NCT01797120) was a double-blind randomized phase II trial comparing fulvestrant to fulvestrant plus everolimus in postmenopausal women whose disease had progressed after receiving an AI in the adjuvant or metastatic setting. Sixty-six women were randomly assigned to the combination arm and 65 to fulvestrant alone.
  • Median PFS was 10.3 months on the combination arm and 5.1 months on the fulvestrant-alone arm (HR, 0.61; 95% CI, 0.40−0.92; P = .02).
  • [Level of evidence: 1iDiii]
  • Toxicities were similar to those in previous studies.
  • The was no observed difference in OS between the arms.
  • The SWISH trial (NCT02069093) was a single-arm trial assessing the efficacy of a dexamethasone oral solution (0.5 mg per 5 mL) in the prevention of stomatitis in women receiving exemestane plus everolimus.
  • The incidence of grade 2 or worse stomatitis was 2% in the 85 evaluable patients in this study compared with 33% in the BOLERO-2 trial.
  • Alpelisib plus endocrine therapy

    Activating mutations in PIK3CA are identified in approximately 40% of hormone receptor–positive and HER2-negative breast cancers. Alpelisib is an alpha-specific PI3K inhibitor.

    Evidence (alpelisib plus endocrine therapy):

  • SOLAR-1 (NCT02437318) was a randomized phase III trial comparing alpelisib plus fulvestrant to placebo plus fulvestrant in 572 postmenopausal women with hormone receptor–positive and HER2-negative advanced breast cancer who had received previous endocrine therapy.
  • [Level of evidence: 1iiDiii]
  • PIK3CA mutations were confirmed in 341 participants. The primary endpoint was PFS in the cohort of patients with PIK3CA mutations.

  • In this cohort, median PFS was 11 months in the alpelisib-plus-fulvestrant arm compared with 5.7 months in the placebo-plus-fulvestrant arm (HRprogression or HRdeath, 0.65; 95% CI, 0.50−0.85; P < .001).
  • PFS did not differ between arms in the cohort of participants without PIK3CA mutations (median PFS, 7.4 months in the alpelisib-plus-fulvestrant arm vs. 5.6 months in the placebo-plus-fulvestrant arm).
  • OS in the cohort with PIK3CA mutations was a secondary endpoint. OS data are not yet mature.
  • Very few study participants had received previous CDK4/6 inhibitor therapy.
  • Common toxicities associated with alpelisib included hyperglycemia, diarrhea, nausea, anorexia, and rash. Careful monitoring and management of hyperglycemia are required during alpelisib use.
  • Alpelisib is approved by the FDA for use in combination with fulvestrant in advanced PIK3CA-mutated, hormone receptor–positive, HER2-negative breast cancer after previous endocrine therapy.

  • Evidence of mTOR inhibitor activity in HER2-positive breast cancer was shown in the double-blind, placebo-controlled, phase III BOLERO-3 (NCT01007942) trial.
  • [Level of evidence: 1iDiii] In the BOLERO-3 trial, 569 patients with HER2-positive, trastuzumab-resistant, breast cancer, who had received previous taxane therapy, were randomly assigned to receive either everolimus plus trastuzumab plus vinorelbine, or placebo plus trastuzumab plus vinorelbine.
  • At median follow-up of 20.2 months, median PFS was 7.0 months in the everolimus group versus 5.78 months in the placebo group (HR, 0.78; 95% CI, 0.65–0.95; P = .0067).
  • Serious adverse events were reported in 117 patients (42%) in the everolimus group and 55 patients (20%) in the placebo group.
  • Final OS outcomes for this trial have not yet been reported.
  • Endocrine therapy alone

    With the PFS and OS advantages associated with combination therapy with targeted agents and endocrine therapy as discussed above, single-agent endocrine therapy is less frequently used, especially in the first-line setting. However, its use remains appropriate in select cases as first-line therapy and in later-line therapy after progression on targeted therapies and before the use of chemotherapy in cases in which endocrine-sensitive disease is still thought to be present.

    Commonly used single-agent endocrine therapies include tamoxifen, nonsteroidal AI (letrozole, anastrozole), the steroidal AI exemestane, and fulvestrant. In general, premenopausal women with metastatic breast cancer undergo ovarian suppression or ablation and are treated in the same manner as postmenopausal women.

    Tamoxifen and AI therapy

    While tamoxifen has been used for many years in treating postmenopausal women with newly metastatic disease that is ER positive, PR positive, or ER/PR unknown, several randomized trials suggest equivalent or superior response rates and PFS for the AI compared with tamoxifen.

    [Level of evidence: 1iiDiii]

    Evidence (tamoxifen and AI therapy):

  • A meta-analysis evaluated patients with metastatic disease who were randomly assigned to receive either an AI as their first or second hormone therapy, or standard therapy (tamoxifen or a progestational agent).
  • [Level of evidence: 1iA]
  • Patients who received an AI as either their first or second hormone therapy for metastatic disease and were randomly assigned to receive a third-generation drug (anastrozole, letrozole, exemestane, or vorozole) lived longer (HRdeath, 0.87; 95% CI, 0.82–0.93) than those who received standard therapy (tamoxifen or a progestational agent).
  • Fulvestrant

    Fulvestrant is a selective estrogen receptor degrader that has been studied in the first-line and second-line setting in women with advanced or metastatic breast cancer.

    First-line fulvestrant

    Evidence (first-line fulvestrant):

  • FALCON (NCT01602380) was a phase III double-blind randomized trial that compared fulvestrant (500 mg) to anastrozole (1 mg) in patients with advanced or metastatic receptor-positive breast cancer who had not received previous endocrine therapy.
  • The trial randomly assigned 230 patients to receive fulvestrant and 232 patients to receive anastrozole.
  • Median PFS was 16.6 months in the fulvestrant group and 13.8 months in the anastrozole group (HR, 0.797; 95% CI, 0.637−0.999; P = .049).
  • [Level of evidence: 1iDiii]
  • The frequency of adverse events was similar in the two groups, and there was no difference in quality of life.
  • OS results were not reported.
  • Second-line fulvestrant

    Evidence (second-line fulvestrant):

  • Two randomized trials that enrolled 400 and 451 patients whose disease had progressed after they received tamoxifen demonstrated that fulvestrant yielded results similar to those of anastrozole in terms of its impact on PFS.
  • The proper sequence of these therapies is not known.
  • EFECT (NCT00065325) was a phase III double-blind randomized trial that compared fulvestrant given in a loading-dose regimen (500 mg day 0, 250 mg days 14 and 28, and 250 mg every 28 days thereafter) to exemestane (25 mg) in women who had developed progressive disease after previous nonsteroidal AI (anastrozole or letrozole) therapy.
  • The trial randomly assigned 351 women to receive fulvestrant and 342 women to receive exemestane.
  • Median time to progression was 3.7 months in both groups (HR, 0.93; 95% CI, 0.819−1.133; P = .65).
  • [Level of evidence: 1iDiii]
  • The frequency of adverse events was similar in both groups, and there was no difference in quality of life.
  • OS results were not reported.
  • CONFIRM (NCT00099437) was a double-blind phase III trial that compared two doses of fulvestrant (500 mg vs. 250 mg, each given in a loading-dose schedule) in 736 women whose disease had progressed on previous endocrine therapy.
  • PFS was significantly better on the higher-dose arm (HR, 0.80; 95% CI, 0.68–0.94; P = .006).
  • [Level of evidence: 1iDiii]
  • Adverse events and quality of life were similar on the two arms.
  • Combination endocrine therapy with an AI and fulvestrant

    Conflicting results were found in two trials that compared the combination of the antiestrogen fulvestrant (refer to the section on Fulvestrant for more information about this drug) and anastrozole with anastrozole alone in the first-line treatment of hormone receptor–positive postmenopausal patients with recurrent or metastatic disease.

    In both studies, fulvestrant was administered as a 500-mg loading dose on day 1; 250 mg was administered on days 15 and 29, and monthly thereafter; plus, 1 mg of anastrozole was administered daily. The Southwest Oncology Group (SWOG) trial included more patients who presented with metastatic disease; the Fulvestrant and Anastrozole Combination Therapy (FACT [NCT00256698]) study enrolled more patients who had previously received tamoxifen.

    Evidence (combination endocrine therapy with an AI and fulvestrant):

  • The SWOG trial (SWOG-0226 [NCT00075764]), which enrolled 707 patients, demonstrated a statistically significant difference in PFS (HR, 0.80; 95% CI, 0.68–0.94; P = .007) and OS (HR, 0.81; 95% CI, 0.65–1.00; P = .05).
  • [Level of evidence: 1iA]
  • In an analysis done after 5 more years of follow-up, the observed benefits of combined therapy were still present, and the level of significance with respect to OS was greater (HR, 0.82; 95% CI, 0.69–0.98; P = .03).
  • [Level of evidence: 1iA]
  • In contrast, the FACT trial , which enrolled 514 patients, found no difference in either disease-free survival (DFS) (HR, 0.99; 95% CI, 0.81–1.20; P = .91) or OS (HR, 1.0; 95% CI, 0.76–1.32; P = 1.00).
  • [Level of evidence: 1iA]
  • Sequencing Therapy for Hormone Receptor–Positive Metastatic Breast Cancer

    The optimal sequence of therapies for hormone receptor–positive metastatic breast cancer is not known. In general, in the absence of a visceral crisis, most patients receive sequential endocrine-based regimens before transitioning to chemotherapy. On the basis of the PFS and OS improvements mentioned above, a combination of a CDK4/6 inhibitor therapy and endocrine therapy in the first line is an appropriate choice.

    Hormone Receptor–Negative Breast Cancer

    The treatment for hormone receptor–negative breast cancer is chemotherapy. (Refer to the Chemotherapy section of this summary for more information.)

    HER2/neu–Positive Breast Cancer

    Antibody therapy targeting the HER2 pathway has been used since the 1990s and has revolutionized the treatment of HER2-positive metastatic breast cancer. Several HER2-targeted agents (e.g., trastuzumab, pertuzumab, ado-trastuzumab emtansine, lapatinib) have been approved for treatment of this disease.

    Monoclonal antibody therapy

    Trastuzumab

    Approximately 20% to 25% of patients with breast cancer have tumors that overexpress HER2/neu.

    Trastuzumab is a humanized monoclonal antibody that binds to the HER2/neu receptor.

    In patients previously treated with cytotoxic chemotherapy whose tumors overexpress HER2/neu, administration of trastuzumab as a single agent resulted in a response rate of 21%.

    [Level of evidence: 3iiiDiv]

    Evidence (trastuzumab):

  • In a phase III trial, patients with metastatic disease were randomly assigned to receive either chemotherapy alone (doxorubicin and cyclophosphamide or paclitaxel) or the same chemotherapy plus trastuzumab.
  • [Level of evidence: 1iiA]
  • Patients treated with chemotherapy plus trastuzumab had an OS advantage over those who received chemotherapy alone (25.1 months vs. 20.3 months, P = .05).
  • [Level of evidence: 1iiA]
  • Notably, when combined with doxorubicin, trastuzumab is associated with significant cardiac toxicity.

    Clinical trials comparing multiagent chemotherapy plus trastuzumab with single-agent chemotherapy have yielded conflicting results.

  • In one randomized study of patients with metastatic breast cancer treated with trastuzumab, paclitaxel, and carboplatin, patients tolerated the combination well and had a longer time to disease progression, compared with those treated with trastuzumab and paclitaxel alone.
  • [Level of evidence: 1iDiii]
  • However, no difference in OS, time to disease progression, or response rate was shown in the Breast Cancer International Research Group’s phase III trial (BCIRG-007 [NCT00047255]) that compared carboplatin and docetaxel plus trastuzumab versus docetaxel plus trastuzumab as first-line chemotherapy for metastatic HER2-overexpressing breast cancer.
  • [Level of evidence: 1iiA]
  • Outside of a clinical trial, standard first-line treatment for metastatic HER2-overexpressing breast cancer is single-agent chemotherapy plus trastuzumab.

    Pertuzumab

    Pertuzumab is a humanized monoclonal antibody that binds to a different epitope at the HER2 extracellular domain than does trastuzumab. The binding of pertuzumab to HER2 prevents dimerization with other ligand-activated HER receptors, most notably HER3.

    Evidence (pertuzumab):

  • The phase III CLEOPATRA (NCT00567190) trial assessed the efficacy and safety of pertuzumab plus trastuzumab plus docetaxel versus placebo plus trastuzumab plus docetaxel, in the first-line HER2-positive metastatic setting.
  • [Level of evidence: 1iA]
  • With a median follow-up of 50 months, the median OS was 40.8 months in the control group versus 56.5 months in the pertuzumab group (HR favoring pertuzumab group, 0.68; 95% CI, 0.56–0.84; P < .001). Median PFS per investigator assessment was improved by 6.3 months by the addition of pertuzumab (HR, 0.68; 95% CI, 0.58–0.80).
  • Median OS was 56.5 months in the pertuzumab group compared with 40.8 months in the placebo group (HR, 0.68; 95% CI, 0.57–0.84; P < .001).
  • The toxicity profile was similar in both treatment groups, with no increase in cardiac toxic effects seen in the pertuzumab combination arm.
  • Ado-trastuzumab emtansine

    Ado-trastuzumab emtansine (T-DM1) is an antibody-drug conjugate that incorporates the HER2-targeted antitumor properties of trastuzumab with the cytotoxic activity of the microtubule-inhibitory agent DM1. T-DM1 allows specific intracellular drug delivery to HER2-overexpressing cells, potentially improving the therapeutic index and minimizing exposure of normal tissue.

    Evidence (T-DM1):

  • The phase III EMILIA or TDM4370g (NCT00829166) study was a randomized open-label trial that enrolled 991 patients with HER2-overexpressing, unresectable, locally advanced or metastatic breast cancer who were previously treated with trastuzumab and a taxane.
  • [Level of evidence: 1iiA] Patients were randomly assigned to receive either T-DM1 or lapatinib plus capecitabine.
  • Median PFS was 9.6 months with T-DM1 versus 6.4 months with lapatinib plus capecitabine (HR, 0.65; 95% CI, 0.55–0.77; P < .001).
  • Median OS was longer with trastuzumab emtansine versus lapatinib plus capecitabine (29.9 months vs. 25.9 months; HR, 0.75 [95% CI, 0.64–0.88]).
  • The incidences of thrombocytopenia and increased serum aminotransferase levels were higher in patients who received T-DM1, whereas the incidences of diarrhea, nausea, vomiting, and palmar-plantar syndrome were higher in patients who received lapatinib plus capecitabine.
  • Further evidence of T-DM1’s activity in metastatic HER2-overexpressed breast cancer was shown in a randomized phase II study of T-DM1 versus trastuzumab plus docetaxel.
  • [Level of evidence: 1iiDiii] This trial randomly assigned 137 women with HER2-overexpressed breast cancer in the first-line metastatic setting.
  • At median follow-up of 14 months, median PFS was 9.2 months with trastuzumab plus docetaxel and 14.2 months with T-DM1 (HR, 0.59; 95% CI, 0.36–0.97).
  • Preliminary OS results were similar between treatment arms.
  • T-DM1 had a favorable safety profile compared with trastuzumab plus docetaxel, with fewer grade 3 adverse events (46.4% vs. 90.9%), adverse events leading to treatment discontinuations (7.2% vs. 40.9%), and serious adverse events (20.3% vs. 25.8%).
  • Evidence of activity of T-DM1 in heavily pretreated patients with metastatic, HER2-overexpressed breast cancer who had received previous trastuzumab and lapatinib was shown in the randomized phase III TH3RESA (NCT01419197) study of T-DM1 versus physician’s choice of treatment.
  • [Level of evidence: 1iiA] This trial randomly assigned 602 patients in a 2:1 ratio (404 patients assigned to T-DM1 and 198 patients assigned to physician’s choice) and allowed crossover to T-DM1.
  • At a median follow-up of 7.2 months in the T-DM1 group and 6.5 months in the physician’s-choice group, median PFS was 6.2 months in the T-DM1 group and 3.3 months in the physician’s-choice group (HR, 0.528; 95% CI, 0.422–0.661; P < .0001).
  • OS was significantly longer with trastuzumab emtansine versus the treatment of physician’s choice (median OS, 22.7 months vs. 15.8 months; HR, 0.68; 95% CI, 0.54–0.85; P = .0007).
  • The role of T-DM1 as first-line treatment of metastatic HER2-overexpressed breast cancer was evaluated in the phase III MARIANNE (NCT01120184) trial.
  • [Level of evidence: 1iDiii] This study randomly assigned 1,095 patients to receive either trastuzumab plus taxane, T-DM1 plus placebo, or T-DM1 plus pertuzumab.
  • The median PFS for these treatment groups was 13.7 months for the trastuzumab-plus-taxane group, 14.1 months for the T-DM1-plus-placebo group, and 15.2 months for the T-DM1-plus-pertuzumab group.
  • There was no significant difference in PFS with T-DM1 plus placebo compared with trastuzumab plus taxane (HR, 0.91; 97.5% CI, 0.73–1.13), or with T-DM1 plus pertuzumab compared with trastuzumab plus taxane (HR, 0.87; 97.5% CI, 0.69–1.08).
  • Therefore, neither T-DM1 plus placebo nor T-DM1 plus pertuzumab showed PFS superiority over trastuzumab plus taxane.
  • Tyrosine kinase inhibitor therapy

    Lapatinib is an orally administered tyrosine kinase inhibitor of both HER2/neu and the epidermal growth factor receptor. Lapatinib plus capecitabine has shown activity in patients who have HER2-positive metastatic breast cancer that progressed after treatment with trastuzumab.

    Evidence (lapatinib):

  • A nonblinded randomized trial (GSK-EGF100151 [NCT00078572]) compared the combination of capecitabine and lapatinib with capecitabine alone in 324 patients with locally advanced or metastatic disease that progressed after therapies that included anthracyclines, taxanes, and trastuzumab.
  • [Level of evidence: 1iiA]
  • Median time-to-disease progression in the lapatinib-plus-capecitabine arm was 8.4 months compared with 4.4 months in the capecitabine-alone arm (HR, 0.49; 95% CI, 0.34–0.71; P < .001).
  • There was no difference in OS (HR, 0.92; 95% CI, 0.58–1.46; P = .72).
  • [Level of evidence: 1iiA]
  • Patients on combination therapy were more likely to develop diarrhea, rash, and dyspepsia. (Refer to the PDQ summary on Gastrointestinal Complications for more information about diarrhea.)
  • No data are available on quality of life or treatment after disease progression.
  • Germline BRCA Mutation

    For patients with metastatic breast cancer who carry a germline BRCA mutation, the oral inhibitor of poly (adenosine diphosphate-ribose) polymerase (PARP) has shown activity. BRCA1 and BRCA2 are tumor-suppressor genes that encode proteins involved in DNA repair through the homologous recombination repair pathway. PARP plays a critical role in DNA repair and has been studied as therapy for patients with breast cancer who harbor a germline BRCA mutation.

    Olaparib

    Evidence (olaparib):

  • The OlympiAD (NCT02000622) trial was a randomized, open-label, phase III trial that randomly assigned 302 patients, in a 2:1 ratio, to receive olaparib (300 mg bid) or standard therapy (either single-agent capecitabine, eribulin, or vinorelbine).
  • All patients had received anthracycline and taxane previously in either the adjuvant or metastatic setting, and those with hormone receptor–positive disease had also received endocrine therapy previously.
  • Median PFS was significantly longer in the olaparib group than in the standard therapy group (7.0 months vs. 4.2. months; HR for disease progression or death, 0.58; 95% CI, 0.43–0.80; P < .001).
  • [Level of evidence: 1iiA]
  • OS did not differ between the two treatment groups with median time to death (HRdeath, 0.90; 95% CI, 0.63–1.29; P = .57).
  • Olaparib was less toxic than standard therapy, with a rate of grade 3 or higher adverse events of 36.6% in the olaparib group and 50.5% in the standard therapy group, with anemia, nausea, vomiting, fatigue, headache, and cough occurring more frequently with olaparib; neutropenia, palmar-plantar erythrodysesthesia, and liver-function test abnormalities occurred more commonly with chemotherapy.
  • Of note, subset analysis suggested that PFS improvement with olaparib appeared greater in the triple-negative breast cancer subgroup (HR, 0.43; 95% CI, 0.29–0.63) than in the hormone receptor–positive subgroup (HR, 0.82; 95% CI, 0.55–1.26).
  • Talazoparib

    Evidence (talazoparib):

  • The EMBRACA (NCT01945775) trial was a randomized, open label, phase III trial that assigned 431 patients with a deleterious germline BRCA or BRCA2 mutation and locally advanced or metastatic breast cancer in a 2:1 ratio to talazoparib (1 mg PO qd) or standard single-agent chemotherapy of the physician’s choice (eribulin, capecitabine, gemcitabine, or vinorelbine).
  • All patients had received previous treatment with an anthracycline, taxane, or both. Patients had received three or fewer lines of cytotoxic chemotherapy for advanced breast cancer. Previous platinum therapy in the setting of early breast cancer was permitted if it was completed at least 6 months before progressive disease or if there was no objective progression while on platinum therapy in the advanced-disease setting. Hormone receptor–positive and hormone receptor–negative patients were enrolled.
  • Median PFS was significantly longer in the talazoparib group than in the standard therapy group (8.6 months vs. 5.6 months; HR for disease progression or death, 0.54; 95% CI, 0.41–0.71; P < .001).
  • Benefits were observed in all subgroups, although CIs were wide in the subgroup of patients who had received previous platinum therapy.
  • Median OS did not differ between the two groups (22.3 months vs. 19.5 months; HRdeath, 0.76; 95% CI, 0.55–1.06; P = .11), although survival data are not yet mature.
  • The primary toxicity observed with talazoparib was myelosuppression, especially anemia.
  • Patient-reported outcome data demonstrated more favorable effects of talazoparib than standard chemotherapy on quality-of-life measures.
  • (Refer to the PDQ summary on Genetics of Breast and Gynecologic Cancers for more information.)

    Chemotherapy

    Patients receiving hormone therapy whose tumors have progressed are candidates for cytotoxic chemotherapy. There are no data suggesting that combination therapy results in an OS benefit over single-agent therapy. Patients with hormone receptor–negative tumors and those with visceral metastases or symptomatic disease are also candidates for cytotoxic agents.

    Single agents that have shown activity in metastatic breast cancer include the following:

  • Anthracyclines.
  • Doxorubicin.
  • Epirubicin.
  • Liposomal doxorubicin.
  • Mitoxantrone.
  • Taxanes.
  • Paclitaxel.
  • Docetaxel.
  • Albumin-bound nanoparticle paclitaxel (ABI-007 or Abraxane).
  • Alkylating agents.
  • Cyclophosphamide.
  • Fluoropyrimidines.
  • Capecitabine.
  • Fluorouracil (5-FU).
  • Antimetabolites.
  • Methotrexate.
  • Vinca alkaloids.
  • Vinorelbine.
  • Vinblastine.
  • Vincristine.
  • Platinum.
  • Carboplatin.
  • Cisplatin.
  • Other.
  • Gemcitabine.
  • Mitomycin C.
  • Eribulin mesylate.
  • Ixabepilone.
  • Combination regimens that have shown activity in metastatic breast cancer include the following:

  • AC: Doxorubicin and cyclophosphamide.
  • EC: Epirubicin and cyclophosphamide.
  • Docetaxel and doxorubicin.
  • CAF: Cyclophosphamide, doxorubicin, and 5-FU.
  • CMF: Cyclophosphamide, methotrexate, and 5-FU.
  • Doxorubicin and paclitaxel.
  • Docetaxel and capecitabine.
  • Vinorelbine and epirubicin.
  • Capecitabine and ixabepilone.
  • Carboplatin and gemcitabine.
  • Gemcitabine and paclitaxel.
  • There are no data suggesting that combination therapy results in an OS benefit over single-agent therapy. An Eastern Cooperative Oncology intergroup study (E-1193) randomly assigned patients to receive paclitaxel and doxorubicin, given both as a combination and sequentially.

    Although response rate and time to disease progression were both better for the combination, survival was the same in both groups.

    [Level of evidence: 1iiA];

    The selection of therapy in individual patients is influenced by the following:

  • Rate of disease progression.
  • Presence or absence of comorbid medical conditions.
  • Physician/patient preference.
  • Currently, no data support the superiority of any particular regimen. Sequential use of single agents or combinations can be used for patients who relapse with metastatic disease. Combination chemotherapy is often given if there is evidence of rapidly progressive disease or visceral crisis. Combinations of chemotherapy and hormone therapy have not shown an OS advantage over the sequential use of these agents.

    A systematic review of 17 randomized trials found that the addition of one or more chemotherapy drugs to a chemotherapy regimen in the attempt to intensify the treatment improved tumor response but had no effect on OS.

    [Level of evidence: 1iiA]

    Decisions regarding the duration of chemotherapy may consider the following:

  • Patient preference and goals of treatment.
  • Presence of toxicities from previous therapies.
  • Availability of alternative treatment options.
  • The optimal time for patients with responsive or stable disease has been studied by several groups. For patients who attain a complete response to initial therapy, two randomized trials have shown a prolonged DFS after immediate treatment with a different chemotherapy regimen compared with observation and treatment upon relapse.

    [Level of evidence: 1iiA] Neither of these studies, however, showed an improvement in OS for patients who received immediate treatment; in one of these studies,

    survival was actually worse in the group that was treated immediately. Similarly, no difference in survival was noted when patients with partial response or stable disease after initial therapy were randomly assigned to receive either a different chemotherapy versus observation

    or a different chemotherapy regimen given at higher versus lower doses.

    [Level of evidence: 1iiA] However, 324 patients who achieved disease control were randomly assigned to maintenance chemotherapy or observation. Patients who received maintenance chemotherapy (paclitaxel and gemcitabine) had improved PFS at 6 months and improved OS. This was associated with an increased rate of adverse events.

    [Level of evidence: 1iiA] Because there is no standard approach for treating metastatic disease, patients requiring second-line regimens are good candidates for clinical trials.

    Chemotherapy plus immunotherapy

    The addition of atezolizumab, an anti-programmed death ligand 1 (PD-L1)–positive antibody, to first-line chemotherapy for patients with hormone receptor–negative and HER2-negative advanced breast cancer was evaluated in the phase III randomized placebo-controlled IMpassion130 trial (NCT02425891).

    Participants (N = 902) were randomly assigned 1:1 to atezolizumab plus nanoparticle albumin-bound (nab)-paclitaxel or to placebo plus nab-paclitaxel. Participants were stratified according to the presence of liver metastases (yes/no), receipt of previous taxane therapy (yes/no), and PD-L1 status (positive or negative). PD-L1 score of 1% or greater was defined as positive. Co-primary endpoints included PFS and OS, both of which were evaluated in the intention-to-treat population and in the PD-L1–positive population (n = 369).

  • PFS data are final with a median follow-up of 12.9 months and included the following:
  • In the intention-to-treat population, PFS was improved with the addition of atezolizumab (median PFS, 7.2 months vs. 5.5 months; HR, 0.80; 95% CI, 0.69–0.92; P = .0025).
  • In the PD-L1–positive population, PFS was improved with the addition of atezolizumab (median PFS, 7.5 months vs. 5 months; HR, 0.62; 95% CI, 0.49–0.78; P < .001).
  • OS data are not yet mature. Results of the first interim analysis for OS, performed at the time of the final PFS analysis, included the following:
  • In the intention-to-treat population, there was a nonsignificant trend toward improved OS with the addition of atezolizumab (median OS, 21.3 months vs. 17.6 months; HR, 0.84; 95% CI, 0.69–1.02; P = .08).
  • The study design used hierarchical testing for OS requiring that the OS be statistically significantly improved with atezolizumab in the intention-to-treat population before OS could be compared between the arms in the PD-L1–positive population. Because this requirement was not met at the time of the first interim analysis, a P-value could not be determined at that time for the comparison of OS between the two arms in the PD-L1–positive population. Median OS was, however, 9.5 months longer in the atezolizumab arm in the PD-L1–positive population (25 months vs. 15.5 months; HR, 0.62; 95% CI, 0.45–0.86).
  • [Level of evidence: 1iDiii]
  • Adverse events occurred as expected. Adverse events that were potentially immune-related were more frequent in the atezolizumab arm.
  • Atezolizumab was granted accelerated approval by the FDA for use in combination with protein-bound paclitaxel for patients with unresectable locally advanced or metastatic triple-negative breast cancer whose tumors express PD-L1.

    Sacituzumab govitecan

  • Sacituzumab govitecan is an antibody drug conjugate that combines an anti–trophoblast cell-surface antigen 2 antibody with an active metabolite of irinotecan.
  • In a phase I/II trial, 108 women with triple-negative breast cancer who had received at least two previous chemotherapy regimens (median, three) were treated with sacituzumab govitecan at a dose of 10 mg/kg intravenously on days 1 and 8 of a 21-day cycle.
  • A response rate of 33.3% (95% CI, 24.6%–43.1%) was observed.
  • The median duration of response was 7.7 months (95% CI, 4.9–10.8).
  • [Level of evidence: 3iiiDiv]
  • The main toxicity was neutropenia, and four deaths occurred during treatment.
  • The FDA granted a breakthrough therapy designation for sacituzumab govitecan, and a confirmatory randomized trial is under way.
  • Cardiac toxic effects with anthracyclines

    The potential for anthracycline-induced cardiac toxic effects should be considered in the selection of chemotherapeutic regimens for selected patients. Recognized risk factors for cardiac toxicity include the following:

  • Advanced age.
  • Previous chest-wall radiation therapy.
  • Previous anthracycline exposure.
  • Hypertension and known underlying heart disease.
  • Diabetes.
  • The cardioprotective drug dexrazoxane has been shown to decrease the risk of doxorubicin-induced cardiac toxicity in patients in controlled studies. The use of this agent has permitted patients to receive higher cumulative doses of doxorubicin and has allowed patients with cardiac risk factors to receive doxorubicin.

    The risk of cardiac toxicity may also be reduced by administering doxorubicin as a continuous intravenous infusion.

    The American Society of Clinical Oncology guidelines suggest the use of dexrazoxane in patients with metastatic cancer who have received a cumulative dose of doxorubicin of 300 mg/m2 or more when further treatment with an anthracycline is likely to be of benefit.

    Dexrazoxane has a similar protective effect in patients receiving epirubicin.

    Surgery

    Surgery may be indicated for select patients. For example, patients may need surgery if the following issues occur:

  • Fungating/painful breast lesions (mastectomy).
  • Parenchymal brain or vertebral metastases with spinal cord compression.
  • Isolated lung metastases.
  • Pathologic (or impending) fractures.
  • Pleural or pericardial effusions.
  • (Refer to the PDQ summary on Cancer Pain for more information; refer to the PDQ summary on Cardiopulmonary Syndromes for information about pleural and pericardial effusions.)

    Radiation Therapy

    Radiation therapy has a major role in the palliation of localized symptomatic metastases.

    Indications for external-beam radiation therapy include the following:

  • Painful bony metastases.
  • Unresectable central nervous system metastases (i.e., brain, meninges, and spinal cord).
  • Bronchial obstruction.
  • Fungating/painful breast or chest wall lesions.
  • After surgery for decompression of intracranial or spinal cord metastases.
  • After fixation of pathologic fractures.
  • Strontium chloride Sr 89, a systemically administered radionuclide, can be administered for palliation of diffuse bony metastases.

    Bone-Modifying Therapy

    The use of bone-modifying therapy to reduce skeletal morbidity in patients with bone metastases should be considered.

    Results of randomized trials of pamidronate and clodronate in patients with bony metastatic disease show decreased skeletal morbidity.

    [Level of evidence: 1iC] Zoledronate has been at least as effective as pamidronate.

    The optimal dosing schedule for zoledronate was studied in CALGB-70604 [Alliance; NCT00869206], which randomly assigned 1,822 patients, 855 of whom had metastatic breast cancer, to receive zoledronic acid every 4 weeks or every 12 weeks.

    Skeletal-related events were similar in both groups, with 260 patients (29.5%) in the zoledronate every-4-week dosing group and 253 patients (28.6%) in the zoledronate every-12-week dosing group experiencing at least one skeletal-related event (risk difference of -0.3% [1-sided 95% CI, -4% to infinity]; P < .001 for noninferiority).

    [Level of evidence: 1iiD] This study suggests that the longer dosing interval of zoledronate every 12 weeks is a reasonable treatment option.

    The monoclonal antibody denosumab inhibits the receptor activator of nuclear factor kappa beta ligand (RANKL). A meta-analysis of three phase III trials (NCT00321464, NCT00321620, and NCT00330759) comparing zoledronate versus denosumab for management of bone metastases suggests that denosumab is similar to zoledronate in reducing the risk of a first skeletal-related event.

    (Refer to the PDQ summary on Cancer Pain for more information on bisphosphonates.)

    Bevacizumab

    Bevacizumab is a humanized monoclonal antibody directed against all isoforms of vascular endothelial growth factor–A. Its role in the treatment of metastatic breast cancer remains controversial.

    Evidence (bevacizumab for metastatic breast cancer):

  • The efficacy and safety of bevacizumab as a second- and third-line treatment for patients with metastatic breast cancer were studied in a single, open-label, randomized trial.
  • The study enrolled 462 patients who had received previous anthracycline and taxane therapy and were randomly assigned to receive capecitabine with or without bevacizumab.
  • [Level of evidence: 1iiA]
  • The study failed to demonstrate a statistically significant effect on PFS (4.9 months with combination therapy vs. 4.2 months with capecitabine alone; HR, 0.98) or OS (15.1 months vs. 14.5 months).
  • [Level of Evidence: 1iiA]
  • ECOG-2100 (NCT00028990), an open-label, randomized, phase III trial, compared paclitaxel alone with paclitaxel and bevacizumab.
  • [Level of evidence: 1iiA]
  • The trial demonstrated that the addition of bevacizumab to paclitaxel significantly prolonged median PFS compared with paclitaxel alone as the initial treatment for patients with metastatic breast cancer (11.8 months vs. 5.9 months; HR, 0.60; P < .001).
  • [Level of Evidence: 1iiA]
  • The addition of bevacizumab did not improve OS (26.7 months vs. 25.2 months; P = .16).
  • Notably, patients treated on the bevacizumab-containing arm had significantly higher rates of severe hypertension, proteinuria, cerebrovascular ischemia, and infection.
  • The AVADO (NCT00333775) trial randomly assigned 736 patients to receive docetaxel plus either placebo or bevacizumab at 7.5 mg/kg or 15 mg/kg every 3 weeks as the initial treatment for patients with metastatic breast cancer.
  • [Level of evidence: 1iiA]
  • The combination of docetaxel plus bevacizumab at 15 mg/kg, but not 7.5 mg/kg, modestly improved median PFS compared with placebo (10.1 months vs. 8.1 months) but did not improve OS (30.2 months vs. 31.9 months; P = .85).
  • [Level of Evidence: 1iiA]
  • More toxicity was seen in patients in the bevacizumab-containing arms, with significantly higher rates of bleeding and hypertension compared with patients in the placebo arms.
  • The RIBBON 1 (NCT00262067) trial randomly assigned 1,237 patients in a 2:1 fashion to receive either standard chemotherapy plus bevacizumab or standard chemotherapy plus placebo.
  • [Level of evidence: 1iiA]
  • Median PFS was longer for each bevacizumab-containing combination (capecitabine cohort: increased from 5.7 months to 8.6 months; HR, 0.69; 95% CI, 0.56–0.84; log-rank, P < .001; and taxane-anthracycline cohort: increased from 8.0 months to 9.2 months; HR, 0.64; 95% CI, 0.52–0.80; log-rank, P < .001).
  • [Level of Evidence: 1iiA]
  • No statistically significant differences in OS between the placebo- and bevacizumab-containing arms were observed.
  • Toxicities associated with bevacizumab were similar to those seen in previous bevacizumab clinical trials.
  • The RIBBON 2 (NCT00281697) trial studied the efficacy of bevacizumab as a second-line treatment for metastatic breast cancer. This trial randomly assigned 684 patients in a 2:1 fashion to receive either standard chemotherapy plus bevacizumab or standard chemotherapy plus placebo.
  • [Level of evidence: 1iA]
  • Median PFS increased from 5.1 to 7.2 months for the bevacizumab-containing treatment arm (stratified HR for PFS, 0.78; 95% CI, 0.64–0.93; P = .0072).
  • However, no statistically significant difference in OS was seen (16.4 months for chemotherapy plus placebo vs. 18.0 months for chemotherapy plus bevacizumab, P = .3741).
  • [Level of evidence: 1iA]
  • Toxicities associated with bevacizumab were similar to those seen in previous clinical trials.
  • In November 2011, because of the consistent finding that bevacizumab improved PFS only modestly but did not improve OS, and given bevacizumab’s considerable toxicity profile, the FDA revoked approval of bevacizumab for the treatment of metastatic breast cancer.

    Current Clinical Trials

    Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

    ReferenceSection

  • Honig SF: Hormonal therapy and chemotherapy. In: Harris JR, Morrow M, Lippman ME, et al., eds.: Diseases of the Breast. Lippincott-Raven Publishers: Philadelphia, Pa, 1996, pp 669-734.
  • Seidman AD, Bordeleau L, Fehrenbacher L, et al.: National Cancer Institute Breast Cancer Steering Committee Working Group Report on Meaningful and Appropriate End Points for Clinical Trials in Metastatic Breast Cancer. J Clin Oncol : JCO1800242, 2018.
  • Rugo HS, Diéras V, Gelmon KA, et al.: Impact of palbociclib plus letrozole on patient-reported health-related quality of life: results from the PALOMA-2 trial. Ann Oncol 29 (4): 888-894, 2018.
  • Rugo HS, Finn RS, Diéras V, et al.: Palbociclib plus letrozole as first-line therapy in estrogen receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer with extended follow-up. Breast Cancer Res Treat 174 (3): 719-729, 2019.
  • Turner NC, Ro J, André F, et al.: Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer. N Engl J Med 373 (3): 209-19, 2015.
  • Verma S, O'Shaughnessy J, Burris HA, et al.: Health-related quality of life of postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer treated with ribociclib + letrozole: results from MONALEESA-2. Breast Cancer Res Treat 170 (3): 535-545, 2018.
  • Janni W, Alba E, Bachelot T, et al.: First-line ribociclib plus letrozole in postmenopausal women with HR+ , HER2- advanced breast cancer: Tumor response and pain reduction in the phase 3 MONALEESA-2 trial. Breast Cancer Res Treat 169 (3): 469-479, 2018.
  • Kaufman PA, Toi M, Neven P, et al.: Health-Related Quality of Life in MONARCH 2: Abemaciclib plus Fulvestrant in Hormone Receptor-Positive, HER2-Negative Advanced Breast Cancer After Endocrine Therapy. Oncologist : , 2019.
  • Finn RS, Crown JP, Lang I, et al.: The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 16 (1): 25-35, 2015.
  • Finn RS, Martin M, Rugo HS, et al.: Palbociclib and Letrozole in Advanced Breast Cancer. N Engl J Med 375 (20): 1925-1936, 2016.
  • Hortobagyi GN, Stemmer SM, Burris HA, et al.: Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer. N Engl J Med 375 (18): 1738-1748, 2016.
  • Slamon DJ, Neven P, Chia S, et al.: Phase III Randomized Study of Ribociclib and Fulvestrant in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: MONALEESA-3. J Clin Oncol 36 (24): 2465-2472, 2018.
  • Slamon DJ, Neven P, Chia S, et al.: Overall Survival with Ribociclib plus Fulvestrant in Advanced Breast Cancer. N Engl J Med 382 (6): 514-524, 2020.
  • Tripathy D, Im SA, Colleoni M, et al.: Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol 19 (7): 904-915, 2018.
  • Im SA, Lu YS, Bardia A, et al.: Overall Survival with Ribociclib plus Endocrine Therapy in Breast Cancer. N Engl J Med 381 (4): 307-316, 2019.
  • Goetz MP, Toi M, Campone M, et al.: MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer. J Clin Oncol 35 (32): 3638-3646, 2017.
  • Cristofanilli M, Turner NC, Bondarenko I, et al.: Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol 17 (4): 425-39, 2016.
  • Turner NC, Slamon DJ, Ro J, et al.: Overall Survival with Palbociclib and Fulvestrant in Advanced Breast Cancer. N Engl J Med 379 (20): 1926-1936, 2018.
  • Sledge GW, Toi M, Neven P, et al.: MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy. J Clin Oncol 35 (25): 2875-2884, 2017.
  • Sledge GW, Toi M, Neven P, et al.: The Effect of Abemaciclib Plus Fulvestrant on Overall Survival in Hormone Receptor-Positive, ERBB2-Negative Breast Cancer That Progressed on Endocrine Therapy-MONARCH 2: A Randomized Clinical Trial. JAMA Oncol : , 2019.
  • Dickler MN, Tolaney SM, Rugo HS, et al.: MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2- Metastatic Breast Cancer. Clin Cancer Res 23 (17): 5218-5224, 2017.
  • Baselga J, Campone M, Piccart M, et al.: Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366 (6): 520-9, 2012.
  • Piccart M, Hortobagyi GN, Campone M, et al.: Everolimus plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: overall survival results from BOLERO-2†. Ann Oncol 25 (12): 2357-62, 2014.
  • Bachelot T, Bourgier C, Cropet C, et al.: Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study. J Clin Oncol 30 (22): 2718-24, 2012.
  • Kornblum N, Zhao F, Manola J, et al.: Randomized Phase II Trial of Fulvestrant Plus Everolimus or Placebo in Postmenopausal Women With Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer Resistant to Aromatase Inhibitor Therapy: Results of PrE0102. J Clin Oncol 36 (16): 1556-1563, 2018.
  • Rugo HS, Seneviratne L, Beck JT, et al.: Prevention of everolimus-related stomatitis in women with hormone receptor-positive, HER2-negative metastatic breast cancer using dexamethasone mouthwash (SWISH): a single-arm, phase 2 trial. Lancet Oncol 18 (5): 654-662, 2017.
  • André F, Ciruelos E, Rubovszky G, et al.: Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N Engl J Med 380 (20): 1929-1940, 2019.
  • André F, O'Regan R, Ozguroglu M, et al.: Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol 15 (6): 580-91, 2014.
  • Bonneterre J, Thürlimann B, Robertson JF, et al.: Anastrozole versus tamoxifen as first-line therapy for advanced breast cancer in 668 postmenopausal women: results of the Tamoxifen or Arimidex Randomized Group Efficacy and Tolerability study. J Clin Oncol 18 (22): 3748-57, 2000.
  • Nabholtz JM, Buzdar A, Pollak M, et al.: Anastrozole is superior to tamoxifen as first-line therapy for advanced breast cancer in postmenopausal women: results of a North American multicenter randomized trial. Arimidex Study Group. J Clin Oncol 18 (22): 3758-67, 2000.
  • Mouridsen H, Gershanovich M, Sun Y, et al.: Phase III study of letrozole versus tamoxifen as first-line therapy of advanced breast cancer in postmenopausal women: analysis of survival and update of efficacy from the International Letrozole Breast Cancer Group. J Clin Oncol 21 (11): 2101-9, 2003.
  • Mauri D, Pavlidis N, Polyzos NP, et al.: Survival with aromatase inhibitors and inactivators versus standard hormonal therapy in advanced breast cancer: meta-analysis. J Natl Cancer Inst 98 (18): 1285-91, 2006.
  • Robertson JFR, Bondarenko IM, Trishkina E, et al.: Fulvestrant 500 mg versus anastrozole 1 mg for hormone receptor-positive advanced breast cancer (FALCON): an international, randomised, double-blind, phase 3 trial. Lancet 388 (10063): 2997-3005, 2016.
  • Osborne CK, Pippen J, Jones SE, et al.: Double-blind, randomized trial comparing the efficacy and tolerability of fulvestrant versus anastrozole in postmenopausal women with advanced breast cancer progressing on prior endocrine therapy: results of a North American trial. J Clin Oncol 20 (16): 3386-95, 2002.
  • Howell A, Robertson JF, Quaresma Albano J, et al.: Fulvestrant, formerly ICI 182,780, is as effective as anastrozole in postmenopausal women with advanced breast cancer progressing after prior endocrine treatment. J Clin Oncol 20 (16): 3396-403, 2002.
  • Henderson IC: A rose is no longer a rose. J Clin Oncol 20 (16): 3365-8, 2002.
  • Flemming J, Madarnas Y, Franek JA: Fulvestrant for systemic therapy of locally advanced or metastatic breast cancer in postmenopausal women: a systematic review. Breast Cancer Res Treat 115 (2): 255-68, 2009.
  • Chia S, Gradishar W, Mauriac L, et al.: Double-blind, randomized placebo controlled trial of fulvestrant compared with exemestane after prior nonsteroidal aromatase inhibitor therapy in postmenopausal women with hormone receptor-positive, advanced breast cancer: results from EFECT. J Clin Oncol 26 (10): 1664-70, 2008.
  • Di Leo A, Jerusalem G, Petruzelka L, et al.: Results of the CONFIRM phase III trial comparing fulvestrant 250 mg with fulvestrant 500 mg in postmenopausal women with estrogen receptor-positive advanced breast cancer. J Clin Oncol 28 (30): 4594-600, 2010.
  • Mehta RS, Barlow WE, Albain KS, et al.: Combination anastrozole and fulvestrant in metastatic breast cancer. N Engl J Med 367 (5): 435-44, 2012.
  • Bergh J, Jönsson PE, Lidbrink EK, et al.: FACT: an open-label randomized phase III study of fulvestrant and anastrozole in combination compared with anastrozole alone as first-line therapy for patients with receptor-positive postmenopausal breast cancer. J Clin Oncol 30 (16): 1919-25, 2012.
  • Mehta RS, Barlow WE, Albain KS, et al.: Overall Survival with Fulvestrant plus Anastrozole in Metastatic Breast Cancer. N Engl J Med 380 (13): 1226-1234, 2019.
  • Pegram MD, Pauletti G, Slamon DJ: HER-2/neu as a predictive marker of response to breast cancer therapy. Breast Cancer Res Treat 52 (1-3): 65-77, 1998.
  • Cobleigh MA, Vogel CL, Tripathy D, et al.: Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17 (9): 2639-48, 1999.
  • Slamon DJ, Leyland-Jones B, Shak S, et al.: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344 (11): 783-92, 2001.
  • Seidman A, Hudis C, Pierri MK, et al.: Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 20 (5): 1215-21, 2002.
  • Robert N, Leyland-Jones B, Asmar L, et al.: Randomized phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 24 (18): 2786-92, 2006.
  • Valero V, Forbes J, Pegram MD, et al.: Multicenter phase III randomized trial comparing docetaxel and trastuzumab with docetaxel, carboplatin, and trastuzumab as first-line chemotherapy for patients with HER2-gene-amplified metastatic breast cancer (BCIRG 007 study): two highly active therapeutic regimens. J Clin Oncol 29 (2): 149-56, 2011.
  • Baselga J, Cortés J, Kim SB, et al.: Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366 (2): 109-19, 2012.
  • Swain SM, Baselga J, Kim SB, et al.: Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med 372 (8): 724-34, 2015.
  • Verma S, Miles D, Gianni L, et al.: Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367 (19): 1783-91, 2012.
  • Diéras V, Miles D, Verma S, et al.: Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): a descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol 18 (6): 732-742, 2017.
  • Hurvitz SA, Dirix L, Kocsis J, et al.: Phase II randomized study of trastuzumab emtansine versus trastuzumab plus docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol 31 (9): 1157-63, 2013.
  • Krop IE, Kim SB, González-Martín A, et al.: Trastuzumab emtansine versus treatment of physician's choice for pretreated HER2-positive advanced breast cancer (TH3RESA): a randomised, open-label, phase 3 trial. Lancet Oncol 15 (7): 689-99, 2014.
  • Krop IE, Kim SB, Martin AG, et al.: Trastuzumab emtansine versus treatment of physician's choice in patients with previously treated HER2-positive metastatic breast cancer (TH3RESA): final overall survival results from a randomised open-label phase 3 trial. Lancet Oncol 18 (6): 743-754, 2017.
  • Perez EA, Barrios C, Eiermann W, et al.: Trastuzumab Emtansine With or Without Pertuzumab Versus Trastuzumab Plus Taxane for Human Epidermal Growth Factor Receptor 2-Positive, Advanced Breast Cancer: Primary Results From the Phase III MARIANNE Study. J Clin Oncol 35 (2): 141-148, 2017.
  • Geyer CE, Forster J, Lindquist D, et al.: Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355 (26): 2733-43, 2006.
  • Robson M, Im SA, Senkus E, et al.: Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N Engl J Med 377 (6): 523-533, 2017.
  • Litton JK, Rugo HS, Ettl J, et al.: Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N Engl J Med 379 (8): 753-763, 2018.
  • Wilcken N, Dear R: Chemotherapy in metastatic breast cancer: A summary of all randomised trials reported 2000-2007. Eur J Cancer 44 (15): 2218-25, 2008.
  • Ranson MR, Carmichael J, O'Byrne K, et al.: Treatment of advanced breast cancer with sterically stabilized liposomal doxorubicin: results of a multicenter phase II trial. J Clin Oncol 15 (10): 3185-91, 1997.
  • Harris L, Batist G, Belt R, et al.: Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer 94 (1): 25-36, 2002.
  • Keller AM, Mennel RG, Georgoulias VA, et al.: Randomized phase III trial of pegylated liposomal doxorubicin versus vinorelbine or mitomycin C plus vinblastine in women with taxane-refractory advanced breast cancer. J Clin Oncol 22 (19): 3893-901, 2004.
  • Sparano JA, Makhson AN, Semiglazov VF, et al.: Pegylated liposomal doxorubicin plus docetaxel significantly improves time to progression without additive cardiotoxicity compared with docetaxel monotherapy in patients with advanced breast cancer previously treated with neoadjuvant-adjuvant anthracycline therapy: results from a randomized phase III study. J Clin Oncol 27 (27): 4522-9, 2009.
  • Seidman AD, Berry D, Cirrincione C, et al.: Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressors: final results of Cancer and Leukemia Group B protocol 9840. J Clin Oncol 26 (10): 1642-9, 2008.
  • Gonzalez-Angulo AM, Hortobagyi GN: Optimal schedule of paclitaxel: weekly is better. J Clin Oncol 26 (10): 1585-7, 2008.
  • Gradishar WJ, Tjulandin S, Davidson N, et al.: Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23 (31): 7794-803, 2005.
  • Ibrahim NK, Samuels B, Page R, et al.: Multicenter phase II trial of ABI-007, an albumin-bound paclitaxel, in women with metastatic breast cancer. J Clin Oncol 23 (25): 6019-26, 2005.
  • Blum JL, Jones SE, Buzdar AU, et al.: Multicenter phase II study of capecitabine in paclitaxel-refractory metastatic breast cancer. J Clin Oncol 17 (2): 485-93, 1999.
  • Blum JL, Dieras V, Lo Russo PM, et al.: Multicenter, Phase II study of capecitabine in taxane-pretreated metastatic breast carcinoma patients. Cancer 92 (7): 1759-68, 2001.
  • Venturini M, Paridaens R, Rossner D, et al.: An open-label, multicenter study of outpatient capecitabine monotherapy in 631 patients with pretreated advanced breast cancer. Oncology 72 (1-2): 51-7, 2007.
  • Degardin M, Bonneterre J, Hecquet B, et al.: Vinorelbine (navelbine) as a salvage treatment for advanced breast cancer. Ann Oncol 5 (5): 423-6, 1994.
  • Carmichael J, Walling J: Advanced breast cancer: investigational role of gemcitabine. Eur J Cancer 33 (Suppl 1): S27-30, 1997.
  • Vahdat LT, Pruitt B, Fabian CJ, et al.: Phase II study of eribulin mesylate, a halichondrin B analog, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol 27 (18): 2954-61, 2009.
  • Cortes J, O'Shaughnessy J, Loesch D, et al.: Eribulin monotherapy versus treatment of physician's choice in patients with metastatic breast cancer (EMBRACE): a phase 3 open-label randomised study. Lancet 377 (9769): 914-23, 2011.
  • Smith JW, Vukelja S, Rabe A, et al.: Phase II randomized trial of weekly and every-3-week ixabepilone in metastatic breast cancer patients. Breast Cancer Res Treat 142 (2): 381-8, 2013.
  • Tranum BL, McDonald B, Thigpen T, et al.: Adriamycin combinations in advanced breast cancer. A Southwest Oncology Group Study. Cancer 49 (5): 835-9, 1982.
  • Langley RE, Carmichael J, Jones AL, et al.: Phase III trial of epirubicin plus paclitaxel compared with epirubicin plus cyclophosphamide as first-line chemotherapy for metastatic breast cancer: United Kingdom National Cancer Research Institute trial AB01. J Clin Oncol 23 (33): 8322-30, 2005.
  • Misset JL, Dieras V, Gruia G, et al.: Dose-finding study of docetaxel and doxorubicin in first-line treatment of patients with metastatic breast cancer. Ann Oncol 10 (5): 553-60, 1999.
  • Buzdar AU, Kau SW, Smith TL, et al.: Ten-year results of FAC adjuvant chemotherapy trial in breast cancer. Am J Clin Oncol 12 (2): 123-8, 1989.
  • Tormey DC, Gelman R, Band PR, et al.: Comparison of induction chemotherapies for metastatic breast cancer. An Eastern Cooperative Oncology Group Trial. Cancer 50 (7): 1235-44, 1982.
  • Jassem J, Pieńkowski T, Płuzańska A, et al.: Doxorubicin and paclitaxel versus fluorouracil, doxorubicin, and cyclophosphamide as first-line therapy for women with metastatic breast cancer: final results of a randomized phase III multicenter trial. J Clin Oncol 19 (6): 1707-15, 2001.
  • Biganzoli L, Cufer T, Bruning P, et al.: Doxorubicin and paclitaxel versus doxorubicin and cyclophosphamide as first-line chemotherapy in metastatic breast cancer: The European Organization for Research and Treatment of Cancer 10961 Multicenter Phase III Trial. J Clin Oncol 20 (14): 3114-21, 2002.
  • O'Shaughnessy J, Miles D, Vukelja S, et al.: Superior survival with capecitabine plus docetaxel combination therapy in anthracycline-pretreated patients with advanced breast cancer: phase III trial results. J Clin Oncol 20 (12): 2812-23, 2002.
  • Serin D, Verrill M, Jones A, et al.: Vinorelbine alternating oral and intravenous plus epirubicin in first-line therapy of metastatic breast cancer: results of a multicentre phase II study. Br J Cancer 92 (11): 1989-96, 2005.
  • Thomas ES, Gomez HL, Li RK, et al.: Ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment. J Clin Oncol 25 (33): 5210-7, 2007.
  • O'Shaughnessy J, Schwartzberg L, Danso MA, et al.: Phase III study of iniparib plus gemcitabine and carboplatin versus gemcitabine and carboplatin in patients with metastatic triple-negative breast cancer. J Clin Oncol 32 (34): 3840-7, 2014.
  • Albain KS, Nag SM, Calderillo-Ruiz G, et al.: Gemcitabine plus Paclitaxel versus Paclitaxel monotherapy in patients with metastatic breast cancer and prior anthracycline treatment. J Clin Oncol 26 (24): 3950-7, 2008.
  • Sledge GW, Neuberg D, Bernardo P, et al.: Phase III trial of doxorubicin, paclitaxel, and the combination of doxorubicin and paclitaxel as front-line chemotherapy for metastatic breast cancer: an intergroup trial (E1193). J Clin Oncol 21 (4): 588-92, 2003.
  • Seidman AD: Sequential single-agent chemotherapy for metastatic breast cancer: therapeutic nihilism or realism? J Clin Oncol 21 (4): 577-9, 2003.
  • Overmoyer B: Combination chemotherapy for metastatic breast cancer: reaching for the cure. J Clin Oncol 21 (4): 580-2, 2003.
  • Perez EA: Current management of metastatic breast cancer. Semin Oncol 26 (4 Suppl 12): 1-10, 1999.
  • Jones D, Ghersi D, Wilcken N: Addition of drug/s to a chemotherapy regimen for metastatic breast cancer. Cochrane Database Syst Rev 3: CD003368, 2006.
  • Falkson G, Gelman RS, Pandya KJ, et al.: Eastern Cooperative Oncology Group randomized trials of observation versus maintenance therapy for patients with metastatic breast cancer in complete remission following induction treatment. J Clin Oncol 16 (5): 1669-76, 1998.
  • Peters WP, Jones RB, Vrendenburgh J, et al.: A large, prospective, randomized trial of high-dose combination alkylating agents (CPB) with autologous cellular support (ABMS) as consolidation for patients with metastatic breast cancer achieving complete remission after intensive doxorubicin-based induction therapy (AFM). [Abstract] Proceedings of the American Society of Clinical Oncology 15: A-149, 121, 1996.
  • Muss HB, Case LD, Richards F, et al.: Interrupted versus continuous chemotherapy in patients with metastatic breast cancer. The Piedmont Oncology Association. N Engl J Med 325 (19): 1342-8, 1991.
  • Falkson G, Gelman RS, Glick J, et al.: Metastatic breast cancer: higher versus low dose maintenance treatment when only a partial response or a no change status is obtained following doxorubicin induction treatment. An Eastern Cooperative Oncology Group study. Ann Oncol 3 (9): 768-70, 1992.
  • Park YH, Jung KH, Im SA, et al.: Phase III, multicenter, randomized trial of maintenance chemotherapy versus observation in patients with metastatic breast cancer after achieving disease control with six cycles of gemcitabine plus paclitaxel as first-line chemotherapy: KCSG-BR07-02. J Clin Oncol 31 (14): 1732-9, 2013.
  • Schmid P, Adams S, Rugo HS, et al.: Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N Engl J Med 379 (22): 2108-2121, 2018.
  • Bardia A, Mayer IA, Vahdat LT, et al.: Sacituzumab Govitecan-hziy in Refractory Metastatic Triple-Negative Breast Cancer. N Engl J Med 380 (8): 741-751, 2019.
  • Swain SM, Whaley FS, Gerber MC, et al.: Delayed administration of dexrazoxane provides cardioprotection for patients with advanced breast cancer treated with doxorubicin-containing therapy. J Clin Oncol 15 (4): 1333-40, 1997.
  • Swain SM, Whaley FS, Gerber MC, et al.: Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol 15 (4): 1318-32, 1997.
  • Hensley ML, Schuchter LM, Lindley C, et al.: American Society of Clinical Oncology clinical practice guidelines for the use of chemotherapy and radiotherapy protectants. J Clin Oncol 17 (10): 3333-55, 1999.
  • Marty M, Espié M, Llombart A, et al.: Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane) in advanced/metastatic breast cancer patients treated with anthracycline-based chemotherapy. Ann Oncol 17 (4): 614-22, 2006.
  • Hortobagyi GN, Frye D, Buzdar AU, et al.: Decreased cardiac toxicity of doxorubicin administered by continuous intravenous infusion in combination chemotherapy for metastatic breast carcinoma. Cancer 63 (1): 37-45, 1989.
  • Hensley ML, Hagerty KL, Kewalramani T, et al.: American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol 27 (1): 127-45, 2009.
  • Venturini M, Michelotti A, Del Mastro L, et al.: Multicenter randomized controlled clinical trial to evaluate cardioprotection of dexrazoxane versus no cardioprotection in women receiving epirubicin chemotherapy for advanced breast cancer. J Clin Oncol 14 (12): 3112-20, 1996.
  • Hartsell WF, Scott CB, Bruner DW, et al.: Randomized trial of short- versus long-course radiotherapy for palliation of painful bone metastases. J Natl Cancer Inst 97 (11): 798-804, 2005.
  • Porter AT, McEwan AJ, Powe JE, et al.: Results of a randomized phase-III trial to evaluate the efficacy of strontium-89 adjuvant to local field external beam irradiation in the management of endocrine resistant metastatic prostate cancer. Int J Radiat Oncol Biol Phys 25 (5): 805-13, 1993.
  • Quilty PM, Kirk D, Bolger JJ, et al.: A comparison of the palliative effects of strontium-89 and external beam radiotherapy in metastatic prostate cancer. Radiother Oncol 31 (1): 33-40, 1994.
  • Hillner BE, Ingle JN, Chlebowski RT, et al.: American Society of Clinical Oncology 2003 update on the role of bisphosphonates and bone health issues in women with breast cancer. J Clin Oncol 21 (21): 4042-57, 2003.
  • Paterson AH, Powles TJ, Kanis JA, et al.: Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol 11 (1): 59-65, 1993.
  • Hortobagyi GN, Theriault RL, Lipton A, et al.: Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. Protocol 19 Aredia Breast Cancer Study Group. J Clin Oncol 16 (6): 2038-44, 1998.
  • Powles T, Paterson A, McCloskey E, et al.: Reduction in bone relapse and improved survival with oral clodronate for adjuvant treatment of operable breast cancer [ISRCTN83688026]. Breast Cancer Res 8 (2): R13, 2006.
  • Rosen LS, Gordon D, Kaminski M, et al.: Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter, comparative trial. Cancer 98 (8): 1735-44, 2003.
  • Himelstein AL, Foster JC, Khatcheressian JL, et al.: Effect of Longer-Interval vs Standard Dosing of Zoledronic Acid on Skeletal Events in Patients With Bone Metastases: A Randomized Clinical Trial. JAMA 317 (1): 48-58, 2017.
  • Lipton A, Fizazi K, Stopeck AT, et al.: Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomised, phase 3 trials. Eur J Cancer 48 (16): 3082-92, 2012.
  • Miller KD, Chap LI, Holmes FA, et al.: Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23 (4): 792-9, 2005.
  • Miller K, Wang M, Gralow J, et al.: Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357 (26): 2666-76, 2007.
  • Miles DW, Chan A, Dirix LY, et al.: Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 28 (20): 3239-47, 2010.
  • Robert NJ, Diéras V, Glaspy J, et al.: RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol 29 (10): 1252-60, 2011.
  • Brufsky AM, Hurvitz S, Perez E, et al.: RIBBON-2: a randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 29 (32): 4286-93, 2011.
  • 乳腺癌治疗(成人)(PDQ®)

    介绍

    导管原位癌(DCIS)是一种非侵袭性疾病。DCIS可以发展成浸润性癌,但对这种可能性的估计差异很大。一些报告将DCIS纳入乳腺癌统计。预计到2020年,DCIS将占美国所有新诊断的浸润性和非浸润性乳腺肿瘤的18%。

    对于通过筛查发现的浸润性和非浸润性肿瘤,DCIS约占所有病例的25%。

    自从乳腺钼靶X线检查技术在美国广泛应用以来,诊断DCIS的频率明显增加。很少有DCIS表现为可触及的肿块,超过90%的DCIS仅通过钼靶诊断。

    DCIS包括一组异质性组织病理学病变,根据结构模式主要分为以下亚型:

  • 微乳头状。
  • 乳突状。
  • 实性。
  • 筛状。
  • 粉刺状。
  • 粉刺型乳腺导管原位癌由细胞学上呈恶性的细胞组成,伴有高级别核、多型性和大量中央管腔坏死。粉刺型乳腺导管原位癌的侵袭性更强,伴有浸润性导管癌的可能性更高。

    DCIS患者的治疗选择

    DCIS的治疗方案包括:

  • 保乳手术或乳房切除术加放射治疗加或不加他莫昔芬。
  • 全乳房切除术加或不加他莫昔芬。
  • 在过去,DCIS的常规治疗是乳房切除术。

    30%的DCIS为多灶性病变、仅行广泛切除后仍有40%的肿瘤残存、局限性切除可触及的肿瘤后25-50%会复发且其中50%为浸润癌。而行乳房单纯切除后局部及远处复发率仅1%-2%。目前尚无关于乳房单纯切除术与保乳手术联合放疗疗效对比的随机研究数据。

    由于保乳手术联合乳腺放射治疗是治疗浸润性癌的有效方法,因此将保乳手术推广到DCIS。为了确定保乳手术加放射治疗是否为治疗DCIS的合理方法,国家外科辅助性乳腺和肠道项目(NSABP)和欧洲癌症研究和治疗组织(EORTC)各自完成了前瞻性随机试验,其中切除活检后局部DCIS和手术切缘阴性的女性被随机分配接受乳腺放射治疗(50 Gy)或者没有进一步的治疗。

    证据(保乳手术加乳腺放射治疗):

  • 在参与NSABP-B-17试验的818例女性中,80%是通过乳腺X线诊断的,70%的患者的病灶为1cm或更小。在12年的精算随访期间报告了结果。
  • [证据等级:1iiDii]
  • 放疗后乳腺癌复发率由31.7%降至15.7%(P<0.005)。
  • 放射治疗使浸润性癌的复发率由16.8%降至7.7%(P=0.001),DCIS的复发率由14.6%降至8.0%(P=0.001)。
  • 评估了9种病理特征对乳腺癌复发的预测能力,但只有粉刺状坏死被确定为复发的重要预测因素。
  • 同样,在参与EORTC-10853试验的1010例患者中,71%的女性通过钼靶检查发现了病变。平均随访10.5年。
  • [证据等级:1iiDii]
  • 乳腺癌总复发率从26%降低到15%(P<0.001),浸润性复发率(13%到8%,P=0.065)和非浸润性复发率(14%到7%,P=0.001)也有类似的有效降低。
  • 在该分析中,与乳房内复发风险增加相关的参数包括:年龄40岁或40岁以下、病灶可触及、中分化或低分化乳腺导管原位癌、筛状或实体生长模式以及边缘不确定。在其他地方,即使采用放射治疗,小于1毫米的边缘也会导致不可接受的局部复发率。
  • 在这两项研究中,放射治疗的效果在所有评估的风险因素中是一致的。

  • 在对四个随机试验的系统回顾中证实了放射治疗的获益(危险比[HR],0.49;95%置信区间[CI],0.41-0.58;P<0.00001)。在这项研究中,9例女性需要接受放射治疗,以防止同侧乳腺复发。
  • 肿瘤放射治疗组(RTOG-9804[NCT0003857])进行的一项比较保乳手术和他莫昔芬加放疗或不加放疗的大型国家临床试验,因入组情况较差而结束(计划1790例患者中有636例入组)。有较低风险的DCIS(定义为钼靶检测的低或中级DCIS,测量小于2.5cm,切缘大于或等于3mm)的患者被纳入研究。
  • 中位随访7年,观察组的同侧局部复发率较低(6.7%;95%CI,3.2%-9.6%),但加用放疗后(0.9%;95%CI,0.0%-2.2%)显著降低。
  • NSABP-B-17和EORTC-10853试验以及另外两个试验的结果被纳入荟萃分析,显示所有同侧乳腺事件(HR,0.49;95%CI,0.41-0.58;P<0.00001)、同侧浸润性复发(HR,0.50;95%CI,0.32-0.76;P=0.001)和同侧DCIS复发(HR,0.61;95%CI,0.39-0.95;P=0.03)均减少。

    [证据级别:1iiD]随访10年后,对乳腺癌死亡率、非乳腺癌死亡率或全因死亡率均无显著影响。

    为了确定一组术后可省略放疗的患者,已经开发了几种病理分期系统并对其进行了回顾性检测,但尚未达成一致意见。

    Van-Nuys预后指数是一个结合了三个局部复发预测因子(即肿瘤大小、切缘宽度和病理分类)的病理分期系统。采用回顾性分析方法,对333例单纯切除或放射治疗的病例进行分析。

    利用预后指数,仅行手术切除的良性病变患者复发率较低(即2%,平均随访79个月)。随后对这些数据进行分析,以确定切缘宽度对局部控制的影响。

    切除病灶的患者在各个方向的边缘宽度都在10毫米或以上,仅通过手术,局部复发的可能性极低(4%,平均随访8年)。

    这两篇综述都是回顾性的、非对照的,并且有很大的选择偏差。相反,前瞻性NSABP试验未发现任何亚组患者在DCIS的治疗中未从乳腺保乳手术加放射治疗获益。

    为了确定他莫昔芬是否能增加局部治疗对DCIS的疗效,NSABP进行了双盲前瞻性试验(NSABP-B-24)。

    证据(辅助内分泌治疗):

  • 在NSABP-B-24中,1804例女性被随机分为接受保乳手术、放射治疗(50Gy)、安慰剂或保乳手术、放射治疗和他莫昔芬(每天20毫克,连续5年)。
  • 23%的患者存在阳性或未知的手术切缘。大约80%的肿瘤小于或等于1厘米,超过80%的肿瘤通过乳房x光检查被发现。乳腺癌事件被定义为新出现的同侧疾病、对侧疾病或转移。
  • 与使用一种安慰剂治疗的女性相比,使用他莫昔芬组的女性在5年内发生的乳腺癌事件更少(8.2%比13.4%;P=0.009)。
  • [证据级别:1iDii]
  • 他莫昔芬治疗5年后,同侧浸润性乳腺癌从4.2%降至2.1%(P=0.03)。
  • 他莫昔芬也将对侧乳腺肿瘤(浸润性和非浸润性)的发病率从每年0.8%降低到每年0.4%(P=0.01)。
  • 他莫昔芬的获益扩展到阳性或有不确定切缘的患者。
  • (更多信息请参阅PDQ乳腺癌预防总结。)
  • 使用他莫昔芬没有显示出生存优势。
  • 在NSABP-B-24中,1804例女性被随机分配接受保乳手术、放射治疗(50Gy)、安慰剂或保乳手术、放射治疗和他莫昔芬(每天20毫克,持续5年)。
  • 23%的患者存在阳性或未知的手术切缘。大约80%的肿瘤小于或等于1厘米,超过80%的肿瘤通过乳房x光检查被发现。乳腺癌事件被定义为新出现的同侧疾病、对侧疾病或转移。
  • 使用他莫昔芬未显示出生存优势。
  • 在NSABP-B35双盲研究中,3104例接受保乳手术的绝经后DCIS女性被随机分配接受辅助性他莫昔芬或阿那曲唑治疗以及辅助性放疗。
  • 使用阿那曲唑可显著减少乳腺癌的发生(HR,0.73;P=0.023),但对生存率没有改善。
  • [证据级别:1iDi]
  • 第二项国际乳腺癌干预研究(IBIS II DCIS[NCT00078832])对2980例绝经后女性进行了他莫昔芬和阿那曲唑辅助治疗的双盲对照研究。所有的女性都做过保乳手术,其中71%接受过放射治疗。
  • 使用阿那曲唑治疗的乳腺癌复发率没有差异(HR,0.89;95%CI,0.64–1.23;P=0.49),生存率也无差异。
  • 在诊断出DCIS后,决定采用内分泌疗法通常需要与患者讨论每种药物的潜在获益和副作用。

    当前临床试验

    使用高级临床试验搜索引擎,以查找NCI支持的正在招募患者的癌症临床试验。根据试验地点、治疗类型、药物名称和其他标准可以缩小搜索范围。有关临床试验的一般信息也可以获得。

    参考文献

  • American Cancer Society: Cancer Facts and Figures 2020. Atlanta, Ga: American Cancer Society, 2020. Available online. Last accessed January 17, 2020.
  • Siegel R, Ward E, Brawley O, et al.: Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61 (4): 212-36, 2011 Jul-Aug.
  • Fisher ER, Dignam J, Tan-Chiu E, et al.: Pathologic findings from the National Surgical Adjuvant Breast Project (NSABP) eight-year update of Protocol B-17: intraductal carcinoma. Cancer 86 (3): 429-38, 1999.
  • Fonseca R, Hartmann LC, Petersen IA, et al.: Ductal carcinoma in situ of the breast. Ann Intern Med 127 (11): 1013-22, 1997.
  • Lagios MD, Westdahl PR, Margolin FR, et al.: Duct carcinoma in situ. Relationship of extent of noninvasive disease to the frequency of occult invasion, multicentricity, lymph node metastases, and short-term treatment failures. Cancer 50 (7): 1309-14, 1982.
  • Fisher B, Dignam J, Wolmark N, et al.: Lumpectomy and radiation therapy for the treatment of intraductal breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-17. J Clin Oncol 16 (2): 441-52, 1998.
  • Fisher B, Land S, Mamounas E, et al.: Prevention of invasive breast cancer in women with ductal carcinoma in situ: an update of the national surgical adjuvant breast and bowel project experience. Semin Oncol 28 (4): 400-18, 2001.
  • Julien JP, Bijker N, Fentiman IS, et al.: Radiotherapy in breast-conserving treatment for ductal carcinoma in situ: first results of the EORTC randomised phase III trial 10853. EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group. Lancet 355 (9203): 528-33, 2000.
  • Bijker N, Meijnen P, Peterse JL, et al.: Breast-conserving treatment with or without radiotherapy in ductal carcinoma-in-situ: ten-year results of European Organisation for Research and Treatment of Cancer randomized phase III trial 10853--a study by the EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group. J Clin Oncol 24 (21): 3381-7, 2006.
  • Chan KC, Knox WF, Sinha G, et al.: Extent of excision margin width required in breast conserving surgery for ductal carcinoma in situ. Cancer 91 (1): 9-16, 2001.
  • Correa C, McGale P, Taylor C, et al.: Overview of the randomized trials of radiotherapy in ductal carcinoma in situ of the breast. J Natl Cancer Inst Monogr 2010 (41): 162-77, 2010.
  • McCormick B, Winter K, Hudis C, et al.: RTOG 9804: a prospective randomized trial for good-risk ductal carcinoma in situ comparing radiotherapy with observation. J Clin Oncol 33 (7): 709-15, 2015.
  • Goodwin A, Parker S, Ghersi D, et al.: Post-operative radiotherapy for ductal carcinoma in situ of the breast. Cochrane Database Syst Rev 11: CD000563, 2013.
  • Page DL, Lagios MD: Pathologic analysis of the National Surgical Adjuvant Breast Project (NSABP) B-17 Trial. Unanswered questions remaining unanswered considering current concepts of ductal carcinoma in situ. Cancer 75 (6): 1219-22; discussion 1223-7, 1995.
  • Fisher ER, Costantino J, Fisher B, et al.: Response - blunting the counterpoint. Cancer 75 (6): 1223-1227, 1995.
  • Holland R, Peterse JL, Millis RR, et al.: Ductal carcinoma in situ: a proposal for a new classification. Semin Diagn Pathol 11 (3): 167-80, 1994.
  • Silverstein MJ, Lagios MD, Craig PH, et al.: A prognostic index for ductal carcinoma in situ of the breast. Cancer 77 (11): 2267-74, 1996.
  • Silverstein MJ, Lagios MD, Groshen S, et al.: The influence of margin width on local control of ductal carcinoma in situ of the breast. N Engl J Med 340 (19): 1455-61, 1999.
  • Goodwin A, Parker S, Ghersi D, et al.: Post-operative radiotherapy for ductal carcinoma in situ of the breast--a systematic review of the randomised trials. Breast 18 (3): 143-9, 2009.
  • Fisher B, Dignam J, Wolmark N, et al.: Tamoxifen in treatment of intraductal breast cancer: National Surgical Adjuvant Breast and Bowel Project B-24 randomised controlled trial. Lancet 353 (9169): 1993-2000, 1999.
  • Houghton J, George WD, Cuzick J, et al.: Radiotherapy and tamoxifen in women with completely excised ductal carcinoma in situ of the breast in the UK, Australia, and New Zealand: randomised controlled trial. Lancet 362 (9378): 95-102, 2003.
  • Margolese RG, Cecchini RS, Julian TB, et al.: Anastrozole versus tamoxifen in postmenopausal women with ductal carcinoma in situ undergoing lumpectomy plus radiotherapy (NSABP B-35): a randomised, double-blind, phase 3 clinical trial. Lancet 387 (10021): 849-56, 2016.
  • Forbes JF, Sestak I, Howell A, et al.: Anastrozole versus tamoxifen for the prevention of locoregional and contralateral breast cancer in postmenopausal women with locally excised ductal carcinoma in situ (IBIS-II DCIS): a double-blind, randomised controlled trial. Lancet 387 (10021): 866-73, 2016.
  • Breast Cancer Treatment (Adult) (PDQ®)

    Introduction

    Ductal carcinoma in situ (DCIS) is a noninvasive condition. DCIS can progress to invasive cancer, but estimates of the probability of this vary widely. Some reports include DCIS in breast cancer statistics. In 2020, DCIS is expected to account for about 18% of all newly diagnosed invasive plus noninvasive breast tumors in the United States.

    For invasive and noninvasive tumors detected by screening, DCIS accounts for approximately 25% of all cases.

    The frequency of a DCIS diagnosis has increased markedly in the United States since the use of screening mammography became widespread. Very few cases of DCIS present as a palpable mass, with more than 90% being diagnosed by mammography alone.

    DCIS comprises a heterogeneous group of histopathologic lesions that have been classified into the following subtypes primarily because of architectural pattern:

  • Micropapillary.
  • Papillary.
  • Solid.
  • Cribriform.
  • Comedo.
  • Comedo-type DCIS consists of cells that appear cytologically malignant, with the presence of high-grade nuclei, pleomorphism, and abundant central luminal necrosis. Comedo-type DCIS appears to be more aggressive, with a higher probability of associated invasive ductal carcinoma.

    Treatment Options for Patients With DCIS

    Treatment options for DCIS include the following:

  • Breast-conserving surgery or mastectomy plus radiation therapy with or without tamoxifen.
  • Total mastectomy with or without tamoxifen.
  • In the past, the customary treatment for DCIS was mastectomy.

    The rationale for mastectomy included a 30% incidence of multicentric disease, a 40% prevalence of residual tumor at mastectomy after wide excision alone, and a 25% to 50% incidence of in-breast recurrence after limited surgery for palpable tumor, with 50% of those recurrences being invasive carcinoma. The combined local and distant recurrence rate after mastectomy is 1% to 2%. No randomized comparisons of mastectomy versus breast-conserving surgery plus breast radiation therapy are available.

    Because breast-conserving surgery combined with breast radiation therapy is successful for invasive carcinoma, this conservative approach was extended to DCIS. To determine whether breast-conserving surgery plus radiation therapy was a reasonable approach to the management of DCIS, the National Surgical Adjuvant Breast and Bowel Project (NSABP) and the European Organisation for Research and Treatment of Cancer (EORTC) have each completed prospective randomized trials in which women with localized DCIS and negative surgical margins after excisional biopsy were randomly assigned to receive either breast radiation therapy (50 Gy) or no further therapy.

    Evidence (breast-conserving surgery plus radiation therapy to the breast):

  • Of the 818 women enrolled in the NSABP-B-17 trial, 80% were diagnosed by mammography, and 70% of the patients' lesions were 1 cm or smaller. Results were reported at the 12-year actuarial follow-up interval.;
  • [Level of evidence: 1iiDii]
  • The overall rate of in-breast tumor recurrence was reduced from 31.7% to 15.7% when radiation therapy was delivered (P < .005).
  • Radiation therapy reduced the occurrence of invasive cancer from 16.8% to 7.7% (P = .001) and recurrent DCIS from 14.6% to 8.0% (P = .001).
  • Nine pathologic features were evaluated for their ability to predict for in-breast recurrence, but only comedo necrosis was determined to be a significant predictor for recurrence.
  • Similarly, of the 1,010 patients enrolled in the EORTC-10853 trial, mammography detected lesions in 71% of the women. Results were reported at a median follow-up of 10.5 years.
  • [Level of evidence: 1iiDii]
  • The overall rate of in-breast tumor recurrence was reduced from 26% to 15% (P < .001), with a similarly effective reduction of invasive recurrence rates (13% to 8%, P = .065) and noninvasive recurrence rates (14% to 7%, P = .001).
  • In this analysis, parameters associated with an increased risk of in-breast recurrence included age 40 years or younger, palpable disease, intermediate or poorly differentiated DCIS, cribriform or solid growth pattern, and indeterminate margins. Elsewhere, margins of less than 1 mm have been associated with an unacceptable local recurrence rate, even with radiation therapy.
  • In both studies, the effect of radiation therapy was consistent across all assessed risk factors.

  • The benefit of administering radiation therapy has been confirmed in a systematic review of four randomized trials (hazard ratio [HR], 0.49; 95% confidence interval [CI], 0.41–0.58; P < .00001). In this study, the number needed to treat with radiation therapy was nine women to prevent one ipsilateral breast recurrence.
  • A large national clinical trial by the Radiation Therapy Oncology Group (RTOG-9804 [NCT00003857]) comparing breast-conserving surgery and tamoxifen with or without radiation therapy was closed because of poor accrual (636 of planned 1,790 patients accrued). Patients with good-risk DCIS (defined as mammographically detected low- or intermediate-grade DCIS, measuring less than 2.5 cm with margins of 3 mm or more) were enrolled.
  • With a median follow-up of 7 years, the ipsilateral local failure rate was low with observation (6.7%; 95% CI, 3.2%–9.6%) but was decreased significantly with the addition of radiation therapy (0.9%; 95% CI, 0.0%–2.2%).
  • The results of the NSABP-B-17 and EORTC-10853 trials plus two others were included in a meta-analysis that demonstrated reductions in all ipsilateral breast events (HR, 0.49; 95% CI, 0.41–0.58; P < .00001), ipsilateral invasive recurrence (HR, 0.50; 95% CI, 0.32–0.76; P = .001), and ipsilateral DCIS recurrence (HR, 0.61; 95% CI, 0.39–0.95; P = .03).

    [Level of evidence: 1iiD] After 10 years of follow-up, there was, however, no significant effect on breast cancer mortality, mortality from causes other than breast cancer, or all-cause mortality.

    To identify a favorable group of patients for whom postoperative radiation therapy could be omitted, several pathologic staging systems have been developed and tested retrospectively, but consensus recommendations have not been achieved.

    The Van Nuys Prognostic Index is one pathologic staging system that combines three predictors of local recurrence (i.e., tumor size, margin width, and pathologic classification). It was used to retrospectively analyze 333 patients treated with either excision alone or excision and radiation therapy.

    Using this prognostic index, patients with favorable lesions who received surgical excision alone had a low recurrence rate (i.e., 2%, with a median follow-up of 79 months). A subsequent analysis of these data was performed to determine the influence of margin width on local control.

    Patients whose excised lesions had margin widths of 10 mm or more in every direction had an extremely low probability of local recurrence with surgery alone (4%, with a mean follow-up of 8 years).

    Both reviews are retrospective, noncontrolled, and subject to substantial selection bias. In contrast, the prospective NSABP trial did not identify any subset of patients who did not benefit from the addition of radiation therapy to breast-conserving surgery in the management of DCIS.

    To determine whether tamoxifen adds to the efficacy of local therapy in the management of DCIS, the NSABP performed a double-blind prospective trial (NSABP-B-24).

    Evidence (adjuvant endocrine therapy):

  • In NSABP-B-24, 1,804 women were randomly assigned to receive breast-conserving surgery, radiation therapy (50 Gy), and placebo or breast-conserving surgery, radiation therapy, and tamoxifen (20 mg qd for 5 years).
  • Positive or unknown surgical margins were present in 23% of patients. Approximately 80% of the lesions measured 1 cm or smaller, and more than 80% were detected mammographically. Breast cancer events were defined as the presence of new ipsilateral disease, contralateral disease, or metastases.
  • Women in the tamoxifen group had fewer breast cancer events at 5 years than did those treated with a placebo (8.2% vs. 13.4%; P = .009).
  • [Level of evidence: 1iDii]
  • With tamoxifen, ipsilateral invasive breast cancer decreased from 4.2% to 2.1% at 5 years (P = .03).
  • Tamoxifen also decreased the incidence of contralateral breast neoplasms (invasive and noninvasive) from 0.8% per year to 0.4% per year (P = .01).
  • The benefit of tamoxifen extended to patients with positive or uncertain margins.
  • (Refer to the PDQ summary on Breast Cancer Prevention for more information.)
  • No survival advantage was demonstrated for the use of tamoxifen.
  • In NSABP-B-24, 1,804 women were randomly assigned to receive breast-conserving surgery, radiation therapy (50 Gy), and placebo or breast-conserving surgery, radiation therapy, and tamoxifen (20 mg qd for 5 y).
  • Positive or unknown surgical margins were present in 23% of patients. Approximately 80% of the lesions measured 1 cm or smaller, and more than 80% were detected mammographically. Breast cancer events were defined as the presence of new ipsilateral disease, contralateral disease, or metastases.
  • No survival advantage was demonstrated for the use of tamoxifen.
  • In the NSABP-B35 double-blind study, 3,104 postmenopausal women with DCIS who were treated with breast-conserving surgery were randomly assigned to receive either adjuvant tamoxifen or anastrozole, in addition to adjuvant radiation therapy.
  • The use of anastrozole was associated with significantly fewer breast cancer events (HR, 0.73; P = .023) but no improvement in survival.
  • [Level of evidence: 1iDi]
  • The Second International Breast Cancer Intervention Study (IBIS II DCIS [NCT00078832]) trial enrolled 2,980 postmenopausal women in a double-blind comparison of tamoxifen with anastrozole as adjuvant therapy. All of the women had breast conserving surgery, and 71% of them had radiation therapy.
  • No difference in the rate of breast cancer recurrence in favor of anastrozole was found (HR, 0.89; 95% CI, 0.64–1.23; P = .49), and there was no difference in survival.
  • The decision to prescribe endocrine therapy after a diagnosis of DCIS often involves a discussion with the patient about the potential benefits and side effects of each agent.

    Current Clinical Trials

    Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

    ReferenceSection

  • American Cancer Society: Cancer Facts and Figures 2020. Atlanta, Ga: American Cancer Society, 2020. Available online. Last accessed January 17, 2020.
  • Siegel R, Ward E, Brawley O, et al.: Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61 (4): 212-36, 2011 Jul-Aug.
  • Fisher ER, Dignam J, Tan-Chiu E, et al.: Pathologic findings from the National Surgical Adjuvant Breast Project (NSABP) eight-year update of Protocol B-17: intraductal carcinoma. Cancer 86 (3): 429-38, 1999.
  • Fonseca R, Hartmann LC, Petersen IA, et al.: Ductal carcinoma in situ of the breast. Ann Intern Med 127 (11): 1013-22, 1997.
  • Lagios MD, Westdahl PR, Margolin FR, et al.: Duct carcinoma in situ. Relationship of extent of noninvasive disease to the frequency of occult invasion, multicentricity, lymph node metastases, and short-term treatment failures. Cancer 50 (7): 1309-14, 1982.
  • Fisher B, Dignam J, Wolmark N, et al.: Lumpectomy and radiation therapy for the treatment of intraductal breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-17. J Clin Oncol 16 (2): 441-52, 1998.
  • Fisher B, Land S, Mamounas E, et al.: Prevention of invasive breast cancer in women with ductal carcinoma in situ: an update of the national surgical adjuvant breast and bowel project experience. Semin Oncol 28 (4): 400-18, 2001.
  • Julien JP, Bijker N, Fentiman IS, et al.: Radiotherapy in breast-conserving treatment for ductal carcinoma in situ: first results of the EORTC randomised phase III trial 10853. EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group. Lancet 355 (9203): 528-33, 2000.
  • Bijker N, Meijnen P, Peterse JL, et al.: Breast-conserving treatment with or without radiotherapy in ductal carcinoma-in-situ: ten-year results of European Organisation for Research and Treatment of Cancer randomized phase III trial 10853--a study by the EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group. J Clin Oncol 24 (21): 3381-7, 2006.
  • Chan KC, Knox WF, Sinha G, et al.: Extent of excision margin width required in breast conserving surgery for ductal carcinoma in situ. Cancer 91 (1): 9-16, 2001.
  • Correa C, McGale P, Taylor C, et al.: Overview of the randomized trials of radiotherapy in ductal carcinoma in situ of the breast. J Natl Cancer Inst Monogr 2010 (41): 162-77, 2010.
  • McCormick B, Winter K, Hudis C, et al.: RTOG 9804: a prospective randomized trial for good-risk ductal carcinoma in situ comparing radiotherapy with observation. J Clin Oncol 33 (7): 709-15, 2015.
  • Goodwin A, Parker S, Ghersi D, et al.: Post-operative radiotherapy for ductal carcinoma in situ of the breast. Cochrane Database Syst Rev 11: CD000563, 2013.
  • Page DL, Lagios MD: Pathologic analysis of the National Surgical Adjuvant Breast Project (NSABP) B-17 Trial. Unanswered questions remaining unanswered considering current concepts of ductal carcinoma in situ. Cancer 75 (6): 1219-22; discussion 1223-7, 1995.
  • Fisher ER, Costantino J, Fisher B, et al.: Response - blunting the counterpoint. Cancer 75 (6): 1223-1227, 1995.
  • Holland R, Peterse JL, Millis RR, et al.: Ductal carcinoma in situ: a proposal for a new classification. Semin Diagn Pathol 11 (3): 167-80, 1994.
  • Silverstein MJ, Lagios MD, Craig PH, et al.: A prognostic index for ductal carcinoma in situ of the breast. Cancer 77 (11): 2267-74, 1996.
  • Silverstein MJ, Lagios MD, Groshen S, et al.: The influence of margin width on local control of ductal carcinoma in situ of the breast. N Engl J Med 340 (19): 1455-61, 1999.
  • Goodwin A, Parker S, Ghersi D, et al.: Post-operative radiotherapy for ductal carcinoma in situ of the breast--a systematic review of the randomised trials. Breast 18 (3): 143-9, 2009.
  • Fisher B, Dignam J, Wolmark N, et al.: Tamoxifen in treatment of intraductal breast cancer: National Surgical Adjuvant Breast and Bowel Project B-24 randomised controlled trial. Lancet 353 (9169): 1993-2000, 1999.
  • Houghton J, George WD, Cuzick J, et al.: Radiotherapy and tamoxifen in women with completely excised ductal carcinoma in situ of the breast in the UK, Australia, and New Zealand: randomised controlled trial. Lancet 362 (9378): 95-102, 2003.
  • Margolese RG, Cecchini RS, Julian TB, et al.: Anastrozole versus tamoxifen in postmenopausal women with ductal carcinoma in situ undergoing lumpectomy plus radiotherapy (NSABP B-35): a randomised, double-blind, phase 3 clinical trial. Lancet 387 (10021): 849-56, 2016.
  • Forbes JF, Sestak I, Howell A, et al.: Anastrozole versus tamoxifen for the prevention of locoregional and contralateral breast cancer in postmenopausal women with locally excised ductal carcinoma in situ (IBIS-II DCIS): a double-blind, randomised controlled trial. Lancet 387 (10021): 866-73, 2016.
  • 乳腺癌治疗(成人)(PDQ®)

    变更总结(02/12/2020)

    定期审查PDQ癌症信息总结,并在获得新信息时进行更新。本节介绍截至上述日期对此总结所做的最新更改。

    更新了2020年估计新发病例和死亡病例的统计数据(引用美国癌症协会作为参考1)。

    这一节作了广泛的修订。

    本总结由PDQ成人治疗编辑委员会编写和维护,编辑委员会独立于NCI。本总结反映了对文献的独立审查,并不代表NCI或NIH的政策声明。关于总结政策和PDQ编辑委员会在维护PDQ总结中的作用的更多信息,可参见本PDQ总结和PDQ® -NCI综合癌症数据库页面。

    Breast Cancer Treatment (Adult) (PDQ®)

    Changes to This Summary (02/12/2020)

    The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

    Updated statistics with estimated new cases and deaths for 2020 (cited American Cancer Society as reference 1).

    This section was extensively revised.

    This summary is written and maintained by the PDQ Adult Treatment Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® - NCI's Comprehensive Cancer Database pages.

    < 1 2 3 4 5 6 7 8 9 >
    目录
    章 节
    乳腺癌的一般信息 乳腺癌的组织病理学分类 乳腺癌的分期信息 早期/局限性/可手术的乳腺癌 局部晚期或炎性乳腺癌 局部复发性乳腺癌 转移性乳腺癌 变更总结(02/12/2020) About This PDQ Summary